ترغب بنشر مسار تعليمي؟ اضغط هنا

Probing molecular potentials with an optical centrifuge

365   0   0.0 ( 0 )
 نشر من قبل Valery Milner
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We use an optical centrifuge to excite coherent rotational wave packets in N$_2$O, CS$_2$ and OCS molecules with rotational quantum numbers reaching up to J=465, 690 and 1186, respectively. Time-resolved rotational spectroscopy at such ultra-high levels of rotational excitation can be used as a sensitive tool to probe the molecular potential energy surface at inter-nuclear distances far from their equilibrium values. Significant bond stretching in the centrifuged molecules results in the growing period of the rotational revivals, which are experimentally detected using coherent Raman scattering. We measure the revival period as a function of the centrifuge-induced rotational frequency and compare it with the numerical calculations based on the known Morse-cosine potentials.



قيم البحث

اقرأ أيضاً

We report on the first experimental demonstration of enantioselective rotational control of chiral molecules with a laser field. In our experiments, two enantiomers of propylene oxide are brought to accelerated unidirectional rotation by means of an optical centrifuge. Using Coulomb explosion imaging, we show that the centrifuged molecules acquire preferential orientation perpendicular to the plane of rotation, and that the direction of this orientation depends on the relative handedness of the enantiomer and the rotating centrifuge field. The observed effect is in agreement with theoretical predictions and is reproduced in numerical simulations of the centrifuge excitation followed by Coulomb explosion of the centrifuged molecules. The demonstrated technique opens new avenues in optical enantioselective control of chiral molecules with a plethora of potential applications in differentiation, separation and purification of chiral mixtures.
The strong coupling between intense laser fields and valence electrons in molecules causes a distortion of the potential energy hypersurfaces which determine the motion of nuclei in a molecule and influences possible reaction pathways. The coupling s trength varies with the angle between the light electric field and valence orbital, and thereby adds another dimension to the effective molecular potential energy surface, allowing for the emergence of light-induced conical intersections. Here, we demonstrate in theory and experiment that the full complexity of such light-induced potential energy surfaces can be uncovered. In H$_2^+$, the simplest of molecules, we observe a strongly modulated angular distribution of protons which has escaped prior observation. These modulations directly result from ultrafast dynamics on the light-induced molecular potentials and can be modified by varying the amplitude, duration and phase of the mid-infrared dressing field. This opens new opportunities for manipulating the dissociation of small molecules using strong laser fields.
Strong laser-induced magnetization of oxygen gas at room temperature and atmospheric pressure is achieved experimentally on the sub-nanosecond time scale. The method is based on controlling the electronic spin of paramagnetic molecules by means of ma nipulating their rotation with an optical centrifuge. Spin-rotational coupling results in high degree of spin polarization on the order of one Bohr magneton per centrifuged molecule. Owing to the non-resonant interaction with the laser pulses, the demonstrated technique is applicable to a broad class of paramagnetic rotors. Executed in a high-density gas, it may offer an efficient way of generating macroscopic magnetic fields remotely (as shown in this work), producing large amount of polarized electrons and converting electronic to nuclear spin polarization.
We demonstrate experimentally a method of all-optical selective rotational control in gas mixtures. Using an optical centrifuge - an intense laser pulse whose linear polarization rotates at an accelerated rate, we simultaneously excite two different molecular species to two different rotational frequencies of choice. The new level of control is achieved by shaping the centrifuge spectrum according to the rotational spectra of the centrifuged molecules. The shaped optical centrifuge releases one molecular species earlier than the other, therefore separating their target rotational frequencies and corresponding rotational states. The technique will expand the utility of rotational control in the studies of the effects of molecular rotation on collisions and chemical reactions.
Since its invention in 1999, optical centrifuge has become a powerful tool for controlling molecular rotation and studying molecular dynamics and molecular properties at extreme levels of rotational excitation. The technique has been applied to a var iety of molecular species, from simple linear molecules to symmetric and asymmetric tops, to molecular ions and chiral enantiomers. Properties of isolated ultrafast rotating molecules, so-called molecular superrotors, have been investigated, as well as their collisions with one another and interaction with external fields. The ability of an optical centrifuge to spin a particular molecule of interest depends on both the molecular structure and the parameters of the centrifuge laser pulse. An interplay between these two factors dictates the utility of an optical centrifuge in any specific application. Here, we discuss the strategy of assessing and adjusting the properties of the centrifuge to those of the molecular rotors, and describe two practical examples of optical centrifuges with very different characteristics, implemented experimentally in our laboratory.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا