ﻻ يوجد ملخص باللغة العربية
The CoVid-19 is spreading pandemically all over the world. A rapid defeat of the pandemic requires carrying out on the population a mass screening, able to separate positive from negative cases. Such a cleaning will free a flow of productive population. The current rate and cost of testing, performed with the common PCR (polymerase chain reaction) method and with the available resources, is forcing a selection of the subjects to be tested. Indeed, each one must be examined individually at the cost of precious time. Moreover, the exclusion of potentially positive individuals from screening induces health risks, a broad slowdown in the effort to curb the viral spread, and the consequent mortality rates. We present a new procedure, the Purified by Unified Resampling of Infected Multitudes, in short Purim, able to untangle any massive candidate sample with inexpensive screening, through the cross-correlated analysis of the joint speciments. This procedure can reveal and detect most negative patients and in most cases discover the identity of the few positives already in the first or few secondary tests. We investigate the the two-dimensional correlation case in function of the infection probability. The multi-dimensional topology, the scaled Purim procedure are also considered. Extensive Purim tests may measure and weight the degree of epidemic: their outcome may identify focal regions in the early stages. Assuming hundreds or thousand subjects, the saving both in time and in cost will be remarkable. Purim may be able to filter scheduled flights, scholar acceptance, popular international event participants. The optimal extension of Purim outcome is growing as the inverse of the epidemia expansion. Therefore, the earlier, the better.
Disease transmission is studied through disciplines like epidemiology, applied mathematics, and statistics. Mathematical simulation models for transmission have implications in solving public and personal health challenges. The SIR model uses a compa
COVID-19 is a new pandemic disease that is affecting almost every country with a negative impact on social life and economic activities. The number of infected and deceased patients continues to increase globally. Mathematical models can help in deve
We present a simple analytical model to describe the fast increase of deaths produced by the corona virus (COVID-19) infections. The D (deaths) model comes from a simplified version of the SIR (susceptible-infected-recovered) model known as SI model.
The COVID-19 pandemic has challenged authorities at different levels of government administration around the globe. When faced with diseases of this severity, it is useful for the authorities to have prediction tools to estimate in advance the impact
The study carries out predictive modeling based on publicly available COVID-19 data for the duration 01 April to 20 June 2020 pertaining to India and five of its most infected states: Maharashtra, Tamil Nadu, Delhi, Gujarat, and Rajasthan using susce