ﻻ يوجد ملخص باللغة العربية
A foundational question in relativistic fluid mechanics concerns the properties of the hydrodynamic gradient expansion at large orders. We establish the precise conditions under which this gradient expansion diverges for a broad class of microscopic theories admitting a relativistic hydrodynamic limit, in the linear regime. Our result does not rely on highly symmetric fluid flows utilized by previous studies of heavy-ion collisions and cosmology. The hydrodynamic gradient expansion diverges whenever energy density or velocity fields have support in momentum space exceeding a critical momentum, and converges otherwise. This critical momentum is an intrinsic property of the microscopic theory and is set by branch point singularities of hydrodynamic dispersion relations.
We derive the chiral kinetic equation in 8 dimensional phase space in non-Abelian $SU(N)$ gauge field within the Wigner function formalism. By using the covariant gradient expansion, we disentangle the Wigner equations in four-vector space up to the
We study thermalization by applying gradient expansion to the Kadanoff-Baym equations of the 2PI effective action to two-loop in a theory with Dirac fermions coupled to scalars. In addition to those chemical potentials which equilibrate in the on-she
We study the medium response to jet evolution in the quark-gluon plasma within the JETSCAPE framework. Recoil partons medium response in the weakly coupled description is implemented in the multi-stage jet energy-loss model in the framework. As a fur
We derive general covariant coupled equations of QCD describing the tetraquark in terms of a mix of four-quark states $2q2bar q$, and two-quark states $qbar q$. The coupling of $2q2bar q$ to $qbar q$ states is achieved by a simple contraction of a fo
We investigate effects of causal hydrodynamic fluctuations in the longitudinally expanding quark gluon plasma on final entropy distributions in high-energy nuclear collisions.