ﻻ يوجد ملخص باللغة العربية
We study thermalization by applying gradient expansion to the Kadanoff-Baym equations of the 2PI effective action to two-loop in a theory with Dirac fermions coupled to scalars. In addition to those chemical potentials which equilibrate in the on-shell limit, we identify modes which are conserved in this approximation, but which relax when off-shell effects are taken into account. This implies that chemical equilibration does not require higher loop contributions to the effective action and is compatible with the gradient expansion. We explicitly calculate the damping time-scales of both, on- and off-shell, chemical equilibration rates. It is shown that off-shell equilibration is suppressed by the thermal width of the particles in the plasma, which explains the separation of on- and off-shell chemical equilibration time-scales.
A foundational question in relativistic fluid mechanics concerns the properties of the hydrodynamic gradient expansion at large orders. We establish the precise conditions under which this gradient expansion diverges for a broad class of microscopic
We show that the physical mechanism for the equilibration of closed quantum systems is dephasing, and identify the energy scales that determine the equilibration timescale of a given observable. For realistic physical systems (e.g those with local Ha
We compute the homogeneous limit of non-hydrodynamic quasinormal modes (QNMs) of a phenomenologically realistic Einstein-Maxwell-Dilaton (EMD) holographic model for the Quark-Gluon Plasma (QGP) that is able to: i) {it quantitatively} describe state-o
The 1/N expansion of the two-particle irreducible effective action offers a powerful approach to study quantum field dynamics far from equilibrium. We investigate the effective convergence of the 1/N expansion in the O(N) model by comparing results o
We derive the chiral kinetic equation in 8 dimensional phase space in non-Abelian $SU(N)$ gauge field within the Wigner function formalism. By using the covariant gradient expansion, we disentangle the Wigner equations in four-vector space up to the