ترغب بنشر مسار تعليمي؟ اضغط هنا

Kinematics of pre-main sequence stars from the Gaia DR2 catalog

92   0   0.0 ( 0 )
 نشر من قبل Vadim V. Bobylev
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The kinematic properties of young stars that have not yet reached the stage of the main sequence are studied. The selection of these stars was recently carried out by Marton et al. (2019) and Vioque et al. (2020) according to the Gaia DR2 catalog using a number of photometric infrared surveys. We have determined the rotation parameters of the Galaxy and the parameters of the ellipsoids of the residual velocities. The linear velocity of the circular rotation of a solar region around the center of the Galaxy, found using 4431 stars, is equal to V_0=229.1+-4.4 km/s. The following ellipsoid parameters of their residual velocities are found from low-mass stars (of type T Tau): $sigma_{1,2,3}=(9.45,6.99,6.61)pm(0.94,0.43,0.32)$ km/s. For stars of intermediate masses (Herbig Ae/Be stars), their values turned out to be somewhat larger $sigma_{1,2,3}=(13.67,9.25,7.26)pm(2.40,2.44,0.88)$ km/s. Distant stars from both Catalogs trace the local spiral arm well. For 1212 stars, a new estimate of the pitch angle of the Local spiral arm is equal to i=-8.9+-0.1 deg.



قيم البحث

اقرأ أيضاً

We use Gaia DR2 data to isolate the pre-main sequence population corresponding to the Scorpius-Lupus-Centaurus-Crux area on the sky making use the Hertzsprung-Russell diagram. A sample of $120,911$ sources was selected with galactic coordinates $285^ circleqellleq360^circ$ and $-10^circleq bleq+32^circ$, and parallaxes between $5$ and $12$~mas where the relative uncertainty in parallax was restricted to be $<10%$. The pre-main sequence sources were isolated due to a clear separation between the pre-main and main sequences, well above the expected $0.75$ magnitude from a possible observed population of equal mass binaries. The final sample contains $14,459$ young stellar objects. The traditional boundaries of the Sco OB2 association are well traced by clear concentrations of young stars where the Upper Scorpius region stands out as the densest concentration. The IC 2602 cluster is visible naturally near $(ell,b)=(290^circ,-5^circ)$. An additional population located at ($bsim5^circ$ and $ellsim345^circ$) with a mean distance of $sim180mathrm{pc}$ ($5$-$6$~mas) is observed. This is consistent with previous studies reported in the literature.
The bulk of X-ray emission from pre-main-sequence (PMS) stars is coronal in origin. We demonstrate herein that stars on Henyey tracks in the Hertzsprung-Russell diagram have lower $log(L_X/L_ast)$, on average, than stars on Hayashi tracks. This effec t is driven by the decay of $L_X$ once stars develop radiative cores. $L_X$ decays faster with age for intermediate mass PMS stars, the progenitors of main sequence A-type stars, compared to those of lower mass. As almost all main sequence A-type stars show no detectable X-ray emission, we may already be observing the loss of their coronae during their PMS evolution. Although there is no direct link between the size or mass of the radiative core and $L_X$, the longer stars have spent with partially convective interiors, the weaker their X-ray emission becomes. This conference paper is a synopsis of Gregory, Adams and Davies (2016).
Pre-main sequence (PMS) stars evolve into main sequence (MS) phase over a period of time. Interestingly, we found a scarcity of studies in existing literature that examines and attempts to better understand the stars in PMS to MS transition phase. Th e purpose of the present study is to detect such rare stars, which we named as Transition Phase (TP) candidates - stars evolving from the PMS to the MS phase. We identified 98 TP candidates using photometric analysis of a sample of 2167 classical Be (CBe) and 225 Herbig Ae/Be (HAeBe) stars. This identification is done by analyzing the near- and mid-infrared excess and their location in the optical color-magnitude diagram. The age and mass of 58 of these TP candidates are determined to be between 0.1-5 Myr and 2-10.5 M$_odot$, respectively. The TP candidates are found to possess rotational velocity and color excess values in between CBe and HAeBe stars, which is reconfirmed by generating a set of synthetic samples using the machine learning approach.
To construct the rotation curve of the Galaxy, classical Cepheids with proper motions, parallaxes and line-of-sight velocities from the Gaia DR2 Catalog are used in large part. The working sample formed from literature data contains about 800 Cepheid s with estimates of their age. We determined that the linear rotation velocity of the Galaxy at a solar distance is $V_0=240pm3$~km s$^{-1}$. In this case, the distance from the Sun to the axis of rotation of the Galaxy is found to be $R_0=8.27pm0.10$~kpc. A spectral analysis of radial and residual tangential velocities of Cepheids younger than 120 Myr showed close estimates of the parameters of the spiral density wave obtained from data both at present time and in the past. So, the value of the wavelength $lambda_{R,theta}$ is in the range of [2.4--3.0] kpc, the pitch angle $i_{R,theta}$ is in the range of [$-13^circ$,$-10^circ$] for a four-arm pattern model, the amplitudes of the radial and tangential perturbations are $f_Rsim12$~km s$^{-1}$ and $f_thetasim9$~km s$^{-1}$, respectively. Velocities of Cepheids older than 120 Myr are currently giving a wavelength $lambda_{R,theta}sim5$~kpc. This value differs significantly from one that we obtained from the samples of young Cepheids. An analysis of positions and velocities of old Cepheids, calculated by integrating their orbits backward in time, made it possible to determine significantly more reliable values of the parameters of the spiral density wave: wavelength $lambda_{R,theta}=2.7$~kpc, amplitudes of radial and tangential perturbations are $f_R=7.9$~km s$^{-1}$ and $f_theta=5$~km s$^{-1}$, respectively.
Using Gaia DR2 astrometry, we map the kinematic signature of the Galactic stellar warp out to a distance of 7 kpc from the Sun. Combining Gaia DR2 and 2MASS photometry, we identify, via a probabilistic approach, 599 494 upper main sequence stars and 12 616 068 giants without the need for individual extinction estimates. The spatial distribution of the upper main sequence stars clearly shows segments of the nearest spiral arms. The large-scale kinematics of both the upper main sequence and giant populations show a clear signature of the warp of the Milky Way, apparent as a gradient of 5-6 km/s in the vertical velocities from 8 to 14 kpc in Galactic radius. The presence of the signal in both samples, which have different typical ages, suggests that the warp is a gravitationally induced phenomenon.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا