ﻻ يوجد ملخص باللغة العربية
We present a novel route for attaining unconventional superconductivity (SC) in a strongly correlated system without doping. In a simple model of a correlated band insulator (BI) at half-filling we demonstrate, based on a generalization of the projected wavefunctions method, that SC emerges when e-e interactions and the bare band-gap are both much larger than the kinetic energy, provided the system has sufficient frustration against the magnetic order. As the interactions are tuned, SC appears sandwiched between the correlated BI followed by a paramagnetic metal on one side, and a ferrimagnetic metal, antiferromagnetic (AF) half-metal, and AF Mott insulator phases on the other side.
We solve by Dynamical Mean Field Theory a toy-model which has a phase diagram strikingly similar to that of high $T_c$ superconductors: a bell-shaped superconducting region adjacent the Mott insulator and a normal phase that evolves from a convention
We use a Luttinger-Ward functional approach to study the problem of phonon-mediated superconductivity in electron systems with strong electron-electron interactions (EEIs). Our derivation does not rely on an expansion in skeleton diagrams for the EEI
A microscopic theory of the electronic spectrum and of superconductivity within the t-J model on the honeycomb lattice is developed. We derive the equations for the normal and anomalous Green functions in terms of the Hubbard operators by applying th
We report point contact measurements in high quality single crystals of Cu0.2Bi2Se3. We observe three different kinds of spectra: (1) Andreev-reflection spectra, from which we infer a superconducting gap size of 0.6mV; (2) spectra with a large gap wh
We present the results of numerical studies of superconductivity and antiferromagnetism in a strongly correlated electron system. To do this we construct a Hubbard model on a lattice of self-consistently embedded multi-site clusters by means of a dyn