ﻻ يوجد ملخص باللغة العربية
We use a Luttinger-Ward functional approach to study the problem of phonon-mediated superconductivity in electron systems with strong electron-electron interactions (EEIs). Our derivation does not rely on an expansion in skeleton diagrams for the EEI and the resulting theory is therefore nonperturbative in the strength of the latter. We show that one of the building blocks of the theory is the irreducible six-leg vertex related to EEIs. Diagrammatically, this implies five contributions (one of the Fock and four of the Hartree type) to the electronic self-energy, which, to the best of our knowledge, have never been discussed in the literature. Our approach is applicable to (and in fact designed to tackle superconductivity in) strongly correlated electron systems described by generic lattice models, as long as the glue for electron pairing is provided by phonons.
We present the results of numerical studies of superconductivity and antiferromagnetism in a strongly correlated electron system. To do this we construct a Hubbard model on a lattice of self-consistently embedded multi-site clusters by means of a dyn
We present a novel route for attaining unconventional superconductivity (SC) in a strongly correlated system without doping. In a simple model of a correlated band insulator (BI) at half-filling we demonstrate, based on a generalization of the projec
We present a combined density-functional-perturbation-theory and inelastic neutron scattering study of the lattice dynamical properties of YNi2B2C. In general, very good agreement was found between theory and experiment for both phonon energies and l
We solve by Dynamical Mean Field Theory a toy-model which has a phase diagram strikingly similar to that of high $T_c$ superconductors: a bell-shaped superconducting region adjacent the Mott insulator and a normal phase that evolves from a convention
I present results from an extended Migdal-Eliashberg theory of electron-phonon interactions and superconductivity. The history of the electron-phonon problem is introduced, and then study of the intermediate parameter regime is justified from the ene