ترغب بنشر مسار تعليمي؟ اضغط هنا

Ridge Regression with Over-Parametrized Two-Layer Networks Converge to Ridgelet Spectrum

366   0   0.0 ( 0 )
 نشر من قبل Sho Sonoda Dr
 تاريخ النشر 2020
والبحث باللغة English




اسأل ChatGPT حول البحث

Characterization of local minima draws much attention in theoretical studies of deep learning. In this study, we investigate the distribution of parameters in an over-parametrized finite neural network trained by ridge regularized empirical square risk minimization (RERM). We develop a new theory of ridgelet transform, a wavelet-like integral transform that provides a powerful and general framework for the theoretical study of neural networks involving not only the ReLU but general activation functions. We show that the distribution of the parameters converges to a spectrum of the ridgelet transform. This result provides a new insight into the characterization of the local minima of neural networks, and the theoretical background of an inductive bias theory based on lazy regimes. We confirm the visual resemblance between the parameter distribution trained by SGD, and the ridgelet spectrum calculated by numerical integration through numerical experiments with finite models.



قيم البحث

اقرأ أيضاً

We consider the dynamic of gradient descent for learning a two-layer neural network. We assume the input $xinmathbb{R}^d$ is drawn from a Gaussian distribution and the label of $x$ satisfies $f^{star}(x) = a^{top}|W^{star}x|$, where $ainmathbb{R}^d$ is a nonnegative vector and $W^{star} inmathbb{R}^{dtimes d}$ is an orthonormal matrix. We show that an over-parametrized two-layer neural network with ReLU activation, trained by gradient descent from random initialization, can provably learn the ground truth network with population loss at most $o(1/d)$ in polynomial time with polynomial samples. On the other hand, we prove that any kernel method, including Neural Tangent Kernel, with a polynomial number of samples in $d$, has population loss at least $Omega(1 / d)$.
Computational efficiency is an important consideration for deploying machine learning models for time series prediction in an online setting. Machine learning algorithms adjust model parameters automatically based on the data, but often require users to set additional parameters, known as hyperparameters. Hyperparameters can significantly impact prediction accuracy. Traffic measurements, typically collected online by sensors, are serially correlated. Moreover, the data distribution may change gradually. A typical adaptation strategy is periodically re-tuning the model hyperparameters, at the cost of computational burden. In this work, we present an efficient and principled online hyperparameter optimization algorithm for Kernel Ridge regression applied to traffic prediction problems. In tests with real traffic measurement data, our approach requires as little as one-seventh of the computation time of other tuning methods, while achieving better or similar prediction accuracy.
336 - Mo Zhou , Rong Ge , Chi Jin 2021
While over-parameterization is widely believed to be crucial for the success of optimization for the neural networks, most existing theories on over-parameterization do not fully explain the reason -- they either work in the Neural Tangent Kernel reg ime where neurons dont move much, or require an enormous number of neurons. In practice, when the data is generated using a teacher neural network, even mildly over-parameterized neural networks can achieve 0 loss and recover the directions of teacher neurons. In this paper we develop a local convergence theory for mildly over-parameterized two-layer neural net. We show that as long as the loss is already lower than a threshold (polynomial in relevant parameters), all student neurons in an over-parameterized two-layer neural network will converge to one of teacher neurons, and the loss will go to 0. Our result holds for any number of student neurons as long as it is at least as large as the number of teacher neurons, and our convergence rate is independent of the number of student neurons. A key component of our analysis is the new characterization of local optimization landscape -- we show the gradient satisfies a special case of Lojasiewicz property which is different from local strong convexity or PL conditions used in previous work.
Adaptive gradient methods are typically used for training over-parameterized models. To better understand their behaviour, we study a simplistic setting -- smooth, convex losses with models over-parameterized enough to interpolate the data. In this s etting, we prove that AMSGrad with constant step-size and momentum converges to the minimizer at a faster $O(1/T)$ rate. When interpolation is only approximately satisfied, constant step-size AMSGrad converges to a neighbourhood of the solution at the same rate, while AdaGrad is robust to the violation of interpolation. However, even for simple convex problems satisfying interpolation, the empirical performance of both methods heavily depends on the step-size and requires tuning, questioning their adaptivity. We alleviate this problem by automatically determining the step-size using stochastic line-search or Polyak step-sizes. With these techniques, we prove that both AdaGrad and AMSGrad retain their convergence guarantees, without needing to know problem-dependent constants. Empirically, we demonstrate that these techniques improve the convergence and generalization of adaptive gradient methods across tasks, from binary classification with kernel mappings to multi-class classification with deep networks.
We propose NovoGrad, an adaptive stochastic gradient descent method with layer-wise gradient normalization and decoupled weight decay. In our experiments on neural networks for image classification, speech recognition, machine translation, and langua ge modeling, it performs on par or better than well tuned SGD with momentum and Adam or AdamW. Additionally, NovoGrad (1) is robust to the choice of learning rate and weight initialization, (2) works well in a large batch setting, and (3) has two times smaller memory footprint than Adam.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا