ﻻ يوجد ملخص باللغة العربية
Characterization of local minima draws much attention in theoretical studies of deep learning. In this study, we investigate the distribution of parameters in an over-parametrized finite neural network trained by ridge regularized empirical square risk minimization (RERM). We develop a new theory of ridgelet transform, a wavelet-like integral transform that provides a powerful and general framework for the theoretical study of neural networks involving not only the ReLU but general activation functions. We show that the distribution of the parameters converges to a spectrum of the ridgelet transform. This result provides a new insight into the characterization of the local minima of neural networks, and the theoretical background of an inductive bias theory based on lazy regimes. We confirm the visual resemblance between the parameter distribution trained by SGD, and the ridgelet spectrum calculated by numerical integration through numerical experiments with finite models.
We consider the dynamic of gradient descent for learning a two-layer neural network. We assume the input $xinmathbb{R}^d$ is drawn from a Gaussian distribution and the label of $x$ satisfies $f^{star}(x) = a^{top}|W^{star}x|$, where $ainmathbb{R}^d$
Computational efficiency is an important consideration for deploying machine learning models for time series prediction in an online setting. Machine learning algorithms adjust model parameters automatically based on the data, but often require users
While over-parameterization is widely believed to be crucial for the success of optimization for the neural networks, most existing theories on over-parameterization do not fully explain the reason -- they either work in the Neural Tangent Kernel reg
Adaptive gradient methods are typically used for training over-parameterized models. To better understand their behaviour, we study a simplistic setting -- smooth, convex losses with models over-parameterized enough to interpolate the data. In this s
We propose NovoGrad, an adaptive stochastic gradient descent method with layer-wise gradient normalization and decoupled weight decay. In our experiments on neural networks for image classification, speech recognition, machine translation, and langua