ترغب بنشر مسار تعليمي؟ اضغط هنا

Adaptive Gradient Methods Converge Faster with Over-Parameterization (but you should do a line-search)

135   0   0.0 ( 0 )
 نشر من قبل Sharan Vaswani
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Adaptive gradient methods are typically used for training over-parameterized models. To better understand their behaviour, we study a simplistic setting -- smooth, convex losses with models over-parameterized enough to interpolate the data. In this setting, we prove that AMSGrad with constant step-size and momentum converges to the minimizer at a faster $O(1/T)$ rate. When interpolation is only approximately satisfied, constant step-size AMSGrad converges to a neighbourhood of the solution at the same rate, while AdaGrad is robust to the violation of interpolation. However, even for simple convex problems satisfying interpolation, the empirical performance of both methods heavily depends on the step-size and requires tuning, questioning their adaptivity. We alleviate this problem by automatically determining the step-size using stochastic line-search or Polyak step-sizes. With these techniques, we prove that both AdaGrad and AMSGrad retain their convergence guarantees, without needing to know problem-dependent constants. Empirically, we demonstrate that these techniques improve the convergence and generalization of adaptive gradient methods across tasks, from binary classification with kernel mappings to multi-class classification with deep networks.



قيم البحث

اقرأ أيضاً

88 - Jie Chen , Ronny Luss 2018
Stochastic gradient descent (SGD), which dates back to the 1950s, is one of the most popular and effective approaches for performing stochastic optimization. Research on SGD resurged recently in machine learning for optimizing convex loss functions a nd training nonconvex deep neural networks. The theory assumes that one can easily compute an unbiased gradient estimator, which is usually the case due to the sample average nature of empirical risk minimization. There exist, however, many scenarios (e.g., graphs) where an unbiased estimator may be as expensive to compute as the full gradient because training examples are interconnected. Recently, Chen et al. (2018) proposed using a consistent gradient estimator as an economic alternative. Encouraged by empirical success, we show, in a general setting, that consistent estimators result in the same convergence behavior as do unbiased ones. Our analysis covers strongly convex, convex, and nonconvex objectives. We verify the results with illustrative experiments on synthetic and real-world data. This work opens several new research directions, including the development of more efficient SGD updates with consistent estimators and the design of efficient training algorithms for large-scale graphs.
300 - Zhou Shao , Tong Lin 2021
Adaptive gradient methods, especially Adam-type methods (such as Adam, AMSGrad, and AdaBound), have been proposed to speed up the training process with an element-wise scaling term on learning rates. However, they often generalize poorly compared wit h stochastic gradient descent (SGD) and its accelerated schemes such as SGD with momentum (SGDM). In this paper, we propose a new adaptive method called DecGD, which simultaneously achieves good generalization like SGDM and obtain rapid convergence like Adam-type methods. In particular, DecGD decomposes the current gradient into the product of two terms including a surrogate gradient and a loss based vector. Our method adjusts the learning rates adaptively according to the current loss based vector instead of the squared gradients used in Adam-type methods. The intuition for adaptive learning rates of DecGD is that a good optimizer, in general cases, needs to decrease the learning rates as the loss decreases, which is similar to the learning rates decay scheduling technique. Therefore, DecGD gets a rapid convergence in the early phases of training and controls the effective learning rates according to the loss based vectors which help lead to a better generalization. Convergence analysis is discussed in both convex and non-convex situations. Finally, empirical results on widely-used tasks and models demonstrate that DecGD shows better generalization performance than SGDM and rapid convergence like Adam-type methods.
Adaptive gradient approaches that automatically adjust the learning rate on a per-feature basis have been very popular for training deep networks. This rich class of algorithms includes Adagrad, RMSprop, Adam, and recent extensions. All these algorit hms have adopted diagonal matrix adaptation, due to the prohibitive computational burden of manipulating full matrices in high-dimensions. In this paper, we show that block-diagonal matrix adaptation can be a practical and powerful solution that can effectively utilize structural characteristics of deep learning architectures, and significantly improve convergence and out-of-sample generalization. We present a general framework with block-diagonal matrix updates via coordinate grouping, which includes counterparts of the aforementioned algorithms, prove their convergence in non-convex optimization, highlighting benefits compared to diagona
We present an adaptive stochastic variance reduced method with an implicit approach for adaptivity. As a variant of SARAH, our method employs the stochastic recursive gradient yet adjusts step-size based on local geometry. We provide convergence guar antees for finite-sum minimization problems and show a faster convergence than SARAH can be achieved if local geometry permits. Furthermore, we propose a practical, fully adaptive variant, which does not require any knowledge of local geometry and any effort of tuning the hyper-parameters. This algorithm implicitly computes step-size and efficiently estimates local Lipschitz smoothness of stochastic functions. The numerical experiments demonstrate the algorithms strong performance compared to its classical counterparts and other state-of-the-art first-order methods.
This paper focuses on projection-free methods for solving smooth Online Convex Optimization (OCO) problems. Existing projection-free methods either achieve suboptimal regret bounds or have high per-iteration computational costs. To fill this gap, two efficient projection-free online methods called ORGFW and MORGFW are proposed for solving stochastic and adversarial OCO problems, respectively. By employing a recursive gradient estimator, our methods achieve optimal regret bounds (up to a logarithmic factor) while possessing low per-iteration computational costs. Experimental results demonstrate the efficiency of the proposed methods compared to state-of-the-arts.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا