ترغب بنشر مسار تعليمي؟ اضغط هنا

Nuclear Quantum Effects in Scattering of H and D from Graphene

110   0   0.0 ( 0 )
 نشر من قبل Xuecheng Tao
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a detailed study of the nuclear quantum effects in H/D sticking to graphene, comparing classical, quantum and mixed quantum/classical simulations to results of scattering experiments. Agreement with experimentally derived sticking probabilities is improved when nuclear quantum effects are included using ring polymer molecular dynamics. Specifically, the quantum motion of the carbon atoms enhances sticking, showing that an accurate description of graphene phonons is important to capturing the adsorption dynamics. We also find an inverse H/D isotope effect arising from Newtonian mechanics.



قيم البحث

اقرأ أيضاً

We show that the centroid molecular dynamics (CMD) method provides a realistic way to calculate the thermal diffusivity $a=lambda/rho c_{rm V}$ of a quantum mechanical liquid such as para-hydrogen. Once $a$ has been calculated, the thermal conductivi ty can be obtained from $lambda=rho c_{rm V}a$, where $rho$ is the density of the liquid and $c_{rm V}$ is the constant-volume heat capacity. The use of this formula requires an accurate quantum mechanical heat capacity $c_{rm V}$, which can be obtained from a path integral molecular dynamics simulation. The thermal diffusivity can be calculated either from the decay of the equilibrium density fluctuations in the liquid or by using the Green-Kubo relation to calculate the CMD approximation to $lambda$ and then dividing this by the corresponding approximation to $rho c_{rm V}$. We show that both approaches give the same results for liquid para-hydrogen and that these results are in good agreement with experimental measurements of the thermal conductivity over a wide temperature range. In particular, they correctly predict a decrease in the thermal conductivity at low temperatures -- an effect that stems from the decrease in the quantum mechanical heat capacity and has eluded previous para-hydrogen simulations. We also show that the method gives equally good agreement with experimental measurements for the thermal conductivity of normal liquid helium.
The non-adiabatic quantum dynamics of the H+H$_2^+$ $rightarrow$ H$_2$+ H$^+$ charge transfer reactions, and some isotopic variants, is studied with an accurate wave packet method. A recently developed $3times$3 diabatic potential model is used, whic h is based on very accurate {it ab initio} calculations and includes the long-range interactions for ground and excited states. It is found that for initial H$_2^+$(v=0), the quasi-degenerate H$_2$(v=4) non-reactive charge transfer product is enhanced, producing an increase of the reaction probability and cross section. It becomes the dominant channel from collision energies above 0.2 eV, producing a ratio, between v=4 and the rest of vs, that increases up to 1 eV. H+H$_2^+$ $rightarrow$ H$_2^+$+ H exchange reaction channel is nearly negligible, while the reactive and non-reactive charge transfer reaction channels are of the same order, except that corresponding to H$_2$(v=4), and the two charge transfer processes compete below 0.2 eV. This enhancement is expected to play an important vibrational and isotopic effect that need to be evaluated. For the three proton case, the problem of the permutation symmetry is discussed when using reactant Jacobi coordinates.
We measure nuclear and electron spin-polarized H and D densities of at least 10$^{19}, cm^{-3}$ with $sim$10 ns lifetimes, from the photodissociation of HBr and DI with circularly-polarized UV light pulses. This density is $sim$6 orders of magnitude higher than that produced by conventional continuous-production methods, and, surprisingly, at least 100 times higher than expected densities for this photodissociation method. We observe the hyperfine quantum beating of the H and D magnetization with a pick-up coil, i.e., the respective 0.7 and 3 ns periodic transfer of polarization from the electrons to the nuclei and back. The $rm{10^{19},cm^{-3}}$ spin-polarized H and D density is sufficient for laser-driven ion acceleration of spin polarized electrons, protons, or deuterons, the preparation of nuclear-spin-polarized molecules, and for the demonstration of spin-polarized D-T or D-$rm{{^3He}}$ laser fusion, for which a reactivity enhancement of $rm{sim50%}$ is expected.
The resolving power of solid-state nuclear magnetic resonance (NMR) crystallography depends heavily on the accuracy of the computational prediction of NMR chemical shieldings of candidate structures, which are usually taken to be local minima in the potential energy surface. To test the limits of this approximation, we perform a systematic study of the role of finite-temperature and quantum nuclear fluctuations on $^1$H, $^{13}$C, and $^{15}$N chemical shieldings in molecular crystals -- considering the paradigmatic examples of the different polymorphs of benzene, glycine, and succinic acid. We find the effect of quantum fluctuations to be comparable in size to the typical errors of predictions of chemical shieldings for static nuclei with respect to experimental measurements, and to improve the match between experiments and theoretical predictions, translating to more reliable assignment of the NMR spectra to the correct candidate structure. Thanks to the use of integrated machine-learning models trained on both first-principles configurational energies and chemical shieldings, the accurate sampling of thermal and quantum fluctuations of the structures can be achieved at an affordable cost, setting a new standard for the calculations that underlie solid-state structural determination by NMR.
Second-Harmonic Scatteringh (SHS) experiments provide a unique approach to probe non-centrosymmetric environments in aqueous media, from bulk solutions to interfaces, living cells and tissue. A central assumption made in analyzing SHS experiments is that the each molecule scatters light according to a constant molecular hyperpolarizability tensor $boldsymbol{beta}^{(2)}$. Here, we investigate the dependence of the molecular hyperpolarizability of water on its environment and internal geometric distortions, in order to test the hypothesis of constant $boldsymbol{beta}^{(2)}$. We use quantum chemistry calculations of the hyperpolarizability of a molecule embedded in point-charge environments obtained from simulations of bulk water. We demonstrate that both the heterogeneity of the solvent configurations and the quantum mechanical fluctuations of the molecular geometry introduce large variations in the non-linear optical response of water. This finding has the potential to change the way SHS experiments are interpreted: in particular, isotopic differences between H$_2$O and D$_2$O could explain recent second-harmonic scattering observations. Finally, we show that a simple machine-learning framework can predict accurately the fluctuations of the molecular hyperpolarizability. This model accounts for the microscopic inhomogeneity of the solvent and represents a first step towards quantitative modelling of SHS experiments.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا