ﻻ يوجد ملخص باللغة العربية
The first numerical implementation of a D-bar method in 3D using electrode data is presented. Results are compared to Calderons method as well as more common TV and smoothness regularization-based methods. D-bar methods are based on tailor-made non-linear Fourier transforms involving the measured current and voltage data. Low-pass filtering in the non-linear Fourier domain is used to stabilize the reconstruction process. D-bar methods have shown great promise in 2D for providing robust real-time absolute and time-difference conductivity reconstructions but have yet to be used on practical electrode data in 3D, until now. Results are presented for simulated data for conductivity and permittivity with disjoint non-radially symmetric targets on spherical domains and noisy voltage data. The 3D D-bar and Calderon methods are demonstrated to provide comparable quality to their 2D CGO counterparts, and hold promise for real-time reconstructions.
Objective: Absolute images have important applications in medical Electrical Impedance Tomography (EIT) imaging, but the traditional minimization and statistical based computations are very sensitive to modeling errors and noise. In this paper, it is
In this paper we discuss a hybridised method for FEM-BEM coupling. The coupling from both sides use a Nitsche type approach to couple to the trace variable. This leads to a formulation that is robust and flexible with respect to approximation spaces
The inverse problem in Acousto-Electric tomography concerns the reconstruction of the electric conductivity in a domain from knowledge of the power density function in the interior of the body. This interior power density results from currents prescr
Partial differential equations (PDEs) are used, with huge success, to model phenomena arising across all scientific and engineering disciplines. However, across an equally wide swath, there exist situations in which PDE models fail to adequately mode
Electrical Impedance Tomography (EIT) aims to recover the internal conductivity and permittivity distributions of a body from electrical measurements taken on electrodes on the surface of the body. The reconstruction task is a severely ill-posed nonl