ﻻ يوجد ملخص باللغة العربية
The friction of a nanosized sphere in commensurate contact with a flat substrate is investigated by performing molecular dynamics simulations. Particular focus is on the distribution of shear stress within the contact region. It is noticed that within the slip zone, the local friction coefficient defined by the ratio of shear stress to normal pressure declines monotonically as the distance to contact center increases. With the lateral force increasing, the slip zone expands inwards from the contact edge. At the same time, the local friction coefficient at the contact edge decreases continuously, while at the dividing between the slip and stick zones keeps nearly invariant. These characteristics are distinctly different from the prediction of the conventional Cattaneo-Mindlin model assuming a constant local friction coefficient within the slip zone. An analytical model is advanced in view of such new features and generalized based on numerous atomic simulations. This model not only accurately characterizes the interfacial shear stress, but also explains the size-dependence of static friction of single nanosized asperity.
A sudden drop in mechanical friction, between an adsorbed nitrogen monolayer and a lead substrate, occurs when the lead passes through the superconducting transition temperature. We attribute this effect to a sudden drop at the superconducting transi
We extend the approach of Carr, Itkin and Muravey, 2021 for getting semi-analytical prices of barrier options for the time-dependent Heston model with time-dependent barriers by applying it to the so-called $lambda$-SABR stochastic volatility model.
During the previous decade, K.L. Jensen et. al. developed a general analytical model that successfully describes electron emission from metals both in the field and thermionic regimes, as well as in the transition region. In that development, the sta
We present and validate a novel semi-analytical approach to study the effect of dynamical friction on the orbits of massive perturbers in rotating stellar discs. We find that dynamical friction efficiently circularises the orbit of co-rotating pertur
We report microscale friction experiments for diamond/metal and diamond/silica contacts under gigapascal contact pressures. Using a new nanoprobe technique which has sufficient dynamic range of force and stiffness, we demonstrate the processes involv