ﻻ يوجد ملخص باللغة العربية
We extend the approach of Carr, Itkin and Muravey, 2021 for getting semi-analytical prices of barrier options for the time-dependent Heston model with time-dependent barriers by applying it to the so-called $lambda$-SABR stochastic volatility model. In doing so we modify the general integral transform method (see Itkin, Lipton, Muravey, Generalized integral transforms in mathematical finance, World Scientific, 2021) and deliver solution of this problem in the form of Fourier-Bessel series. The weights of this series solve a linear mixed Volterra-Fredholm equation (LMVF) of the second kind also derived in the paper. Numerical examples illustrate speed and accuracy of our method which are comparable with those of the finite-difference approach at small maturities and outperform them at high maturities even by using a simplistic implementation of the RBF method for solving the LMVF.
In this paper we develop an algorithm to calculate the prices and Greeks of barrier options in a hyper-exponential additive model with piecewise constant parameters. We obtain an explicit semi-analytical expression for the first-passage probability.
The Heston stochastic volatility model is a standard model for valuing financial derivatives, since it can be calibrated using semi-analytical formulas and captures the most basic structure of the market for financial derivatives with simple structur
We continue a series of papers devoted to construction of semi-analytic solutions for barrier options. These options are written on underlying following some simple one-factor diffusion model, but all the parameters of the model as well as the barrie
We continue a series of papers where prices of the barrier options written on the underlying, which dynamics follows some one factor stochastic model with time-dependent coefficients and the barrier, are obtained in semi-closed form, see (Carr and It
In this paper, we give a numerical method for pricing long maturity, path dependent options by using the Markov property for each underlying asset. This enables us to approximate a path dependent option by using some kinds of plain vanillas. We give