ترغب بنشر مسار تعليمي؟ اضغط هنا

A hard look at local, optically-selected, obscured Seyfert galaxies

69   0   0.0 ( 0 )
 نشر من قبل Elias Kammoun
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the X-ray spectra of a sample of 19 obscured, optically-selected Seyfert galaxies (Sy 1.8, 1.9 and 2) in the local universe ($d leq 175$~Mpc), drawn from the CfA Seyfert sample. Our analysis is driven by the high sensitivity of NuSTAR in the hard X-rays, coupled with soft X-ray spectra using XMM-Newton, Chandra, Suzaku, and Swift/XRT. We also analyze the optical spectra of these sources in order to obtain accurate mass estimates and Eddington fractions. We employ four different models to analyze the X-ray spectra of these sources, which all result in consistent results. We find that 79-90 % of the sources are heavily obscured with line-of-sight column density $N_{rm H} > 10^{23}~rm cm^{-2}$. We also find a Compton-thick ($N_{rm H} > 10^{24}~rm cm^{-2}$) fraction of $37-53$ %. These results are consistent with previous estimates based on multi-wavelength analyses. We find that the fraction of reprocessed to intrinsic emission is positively correlated with $N_{rm H}$ and negatively correlated with the intrinsic, unabsorbed, X-ray luminosity (in agreement with the Iwasawa-Taniguchi effect). Our results support the hypothesis that radiation pressure regulates the distribution of the circumnuclear material.



قيم البحث

اقرأ أيضاً

X-ray reverberation, where light-travel time delays map out the compact geometry around the inner accretion flow in supermassive black holes, has been discovered in several of the brightest, most variable and well-known Seyfert galaxies. In this work , we expand the study of X-ray reverberation to all Seyfert galaxies in the XMM-Newton archive above a nominal rms variability and exposure level (a total of 43 sources). 50 per cent of source exhibit iron K reverberation, in that the broad iron K emission line responds to rapid variability in the continuum. We also find that on long timescales, the hard band emission lags behind the soft band emission in 85 per cent of sources. This `low-frequency hard lag is likely associated with the coronal emission, and so this result suggests that most sources with X-ray variability show intrinsic variability from the nuclear region. We update the known iron K lag amplitude vs. black hole mass relation, and find evidence that the height or extent of the coronal source (as inferred by the reverberation time delay) increases with mass accretion rate.
We present an X-ray spectroscopic study of optically selected (SDSS) Seyfert 2 (Sy2) galaxies. The goal is to study the obscuration of Sy2 galaxies beyond the local universe, using good quality X-ray spectra in combination with high S/N optical spect ra for their robust classification. We analyzed all available XMM-Newton archival observations of narrow emission line galaxies that meet the above criteria in the redshift range 0.05<z<0.35. We initially selected narrow line AGN using the SDSS optical spectra and the BPT classification diagram. We further modeled and removed the stellar continuum, and we analyzed the residual emission line spectrum to exclude any possible intermediate-type Seyferts. Our final catalog comprises 31 Sy2 galaxies with median redshift z~0.1. X-ray spectroscopy is performed using the available X-ray spectra from the 3XMM and the XMMFITCAT catalogs. Implementing various indicators of obscuration, we find seven (~23%) Compton-thick AGN. The X-ray spectroscopic Compton-thick classification agrees with other commonly used diagnostics, such as the X-ray to mid-IR luminosity ratio and the X-ray to [OIII] luminosity ratio. Most importantly, we find four (~13%) unobscured Sy2 galaxies, at odds with the simplest unification model. Their accretion rates are significantly lower than the rest of our Sy2 sample, in agreement with previous studies that predict the absence of the broad line region below a certain Eddington ratio threshold.
(abridged)The majority of Active Galactic Nuclei (AGN) suffer from significant obscuration by surrounding dust and gas. X-ray surveys in the 2-10 keV band will miss the most heavily-obscured AGN in which the absorbing column density exceeds $sim10^{2 4}$cm$^{-2}$ (the Compton-thick AGN). It is therefore vital to know the fraction of AGN that are missed in such X-rays surveys and to determine if these AGN represent some distinct population in terms of the fundamental properties of AGN and/or their host galaxies. In this paper we present the analysis of textit{XMM-Newton} X-ray data for a complete sample of 17 low-redshift Type 2 Seyfert galaxies chosen from the Sloan Digital Sky Survey based solely on the high observed flux of the [OIII]$lambda$5007 emission-line. This line is formed in the Narrow Line Region hundreds of parsecs away from the central engine. Thus, unlike the X-ray emission, it is not affected by obscuration due to the torus surrounding the black hole. It therefore provides a useful isotropic indicator of the AGN luminosity. As additional indicators of the intrinsic AGN luminosity, we use the Spitzer Space Telescope to measure the luminosities of the mid-infrared continuum and the [OIV]25.89$mu$m narrow emission-line. We then use the ratio of the 2-10 keV X-ray luminosity to the [OIII], [OIV], and mid-infrared luminosities to assess the amount of X-ray obscuration and to distinguish between Compton-thick and Compton-thin objects. We find that the majority of the sources suffer significant amounts of obscuration: the observed 2-10 keV emission is depressed by more than an order-of-magnitude in 11 of the 17 cases (as expected for Compton-thick sources).
Broadband X-ray spectroscopy of the X-ray emission produced in the coronae of active galactic nuclei (AGN) can provide important insights into the physical conditions very close to their central supermassive black holes. The temperature of the Compto nizing plasma that forms the corona is manifested through a high-energy cutoff that has been difficult to directly constrain even in the brightest AGN because it requires high-quality data at energies above 10 keV. In this paper we present a large collection of coronal cutoff constraints for obscured AGN based on a sample of 130 AGN selected in the hard X-ray band with Swift/BAT and observed nearly simultaneously with NuSTAR and Swift/XRT. We find that under a reasonable set of assumptions regarding partial constraints the median cutoff is well constrained to 290$pm$20 keV, where the uncertainty is statistical and given at the 68% confidence level. We investigate the sensitivity of this result to our assumptions and find that consideration of various known systematic uncertainties robustly places the median cutoff between 240 keV and 340 keV. The central 68% of the intrinsic cutoff distribution is found to be between about 140 keV and 500 keV, with estimated uncertainties of 20 keV and 100 keV, respectively. In comparison with the literature, we find no clear evidence that the cutoffs in obscured and unobscured AGN are substantially different. Our analysis highlights the importance of carefully considering partial and potentially degenerate constraints on the coronal high-energy cutoff in AGN.
98 - N. Chang , F. G. Xie , X. Liu 2021
Because the disc--jet coupling likely depends on various properties of sources probed, the sample control is always an important but challenging task. In this work, we re-analyzed the INTEGRAL hard X-ray-selected sample of Seyfert galaxies. We only c onsider sources that have measurements in black hole mass, and luminosities in radio and X-rays. Our sample includes 64 sources, consists of both bright AGNs and low-luminosity ones. We first find that, because of the similarity in the $L_{HX}/L_X$ distribution, the X-ray origin of radio-loud Seyferts may be the same to that of radio-quiet ones, where we attribute to the hot accretion flow (or similarly, the corona). We then investigate the connections between luminosities in radio and X-rays. Since our sample suffers a selection bias of a black hole mass $M_{BH}$ dependence on $L_X/L_{Edd}$, we focus on the correlation slope $xi_X$ between the radio (at 1.4 GHz) and X-ray luminosities in Eddington unit, i.e. $(L_R/L_{Edd})propto(L_X/L_{Edd})^{xi_X}$. We classify the sources according to various properties, i.e. 1) Seyfert classification, 2) radio loudness, and 3) radio morphology. We find that, despite these differences in classification, all the sources in our sample are consistent with a universal correlation slope $xi_X$, with $xi_X=0.77pm0.10$. This is unexpected, considering various possible radio emitters in radio-quiet systems. For the jet interpretation, our result may suggest a common/universal but to be identified jet launching mechanism among all the Seyfert galaxies, while properties like black hole spin and magnetic field strength only play secondary roles. We further estimate the jet production efficiency $eta_{jet}$ of Seyfert galaxies, which is $eta_{jet}approx1.9^{+0.9}_{-1.5}times10^{-4}$ on average. We also find that $eta_{jet}$ increases as the system goes fainter.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا