ترغب بنشر مسار تعليمي؟ اضغط هنا

The XMM spectral catalog of SDSS optically selected Seyfert 2 galaxies

96   0   0.0 ( 0 )
 نشر من قبل Elias Koulouridis Dr.
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present an X-ray spectroscopic study of optically selected (SDSS) Seyfert 2 (Sy2) galaxies. The goal is to study the obscuration of Sy2 galaxies beyond the local universe, using good quality X-ray spectra in combination with high S/N optical spectra for their robust classification. We analyzed all available XMM-Newton archival observations of narrow emission line galaxies that meet the above criteria in the redshift range 0.05<z<0.35. We initially selected narrow line AGN using the SDSS optical spectra and the BPT classification diagram. We further modeled and removed the stellar continuum, and we analyzed the residual emission line spectrum to exclude any possible intermediate-type Seyferts. Our final catalog comprises 31 Sy2 galaxies with median redshift z~0.1. X-ray spectroscopy is performed using the available X-ray spectra from the 3XMM and the XMMFITCAT catalogs. Implementing various indicators of obscuration, we find seven (~23%) Compton-thick AGN. The X-ray spectroscopic Compton-thick classification agrees with other commonly used diagnostics, such as the X-ray to mid-IR luminosity ratio and the X-ray to [OIII] luminosity ratio. Most importantly, we find four (~13%) unobscured Sy2 galaxies, at odds with the simplest unification model. Their accretion rates are significantly lower than the rest of our Sy2 sample, in agreement with previous studies that predict the absence of the broad line region below a certain Eddington ratio threshold.



قيم البحث

اقرأ أيضاً

(abridged)The majority of Active Galactic Nuclei (AGN) suffer from significant obscuration by surrounding dust and gas. X-ray surveys in the 2-10 keV band will miss the most heavily-obscured AGN in which the absorbing column density exceeds $sim10^{2 4}$cm$^{-2}$ (the Compton-thick AGN). It is therefore vital to know the fraction of AGN that are missed in such X-rays surveys and to determine if these AGN represent some distinct population in terms of the fundamental properties of AGN and/or their host galaxies. In this paper we present the analysis of textit{XMM-Newton} X-ray data for a complete sample of 17 low-redshift Type 2 Seyfert galaxies chosen from the Sloan Digital Sky Survey based solely on the high observed flux of the [OIII]$lambda$5007 emission-line. This line is formed in the Narrow Line Region hundreds of parsecs away from the central engine. Thus, unlike the X-ray emission, it is not affected by obscuration due to the torus surrounding the black hole. It therefore provides a useful isotropic indicator of the AGN luminosity. As additional indicators of the intrinsic AGN luminosity, we use the Spitzer Space Telescope to measure the luminosities of the mid-infrared continuum and the [OIV]25.89$mu$m narrow emission-line. We then use the ratio of the 2-10 keV X-ray luminosity to the [OIII], [OIV], and mid-infrared luminosities to assess the amount of X-ray obscuration and to distinguish between Compton-thick and Compton-thin objects. We find that the majority of the sources suffer significant amounts of obscuration: the observed 2-10 keV emission is depressed by more than an order-of-magnitude in 11 of the 17 cases (as expected for Compton-thick sources).
74 - D. V. Bizyaev 2016
We study the properties of galaxies with very thin discs using a sample of 85 objects whose stellar disc radial-to-vertical scale ratio determined from photometric decomposition, exceeds nine. We present evidences of similarities between the very thi n disc galaxies (VTD galaxies) and low surface brightness (LSB) disc galaxies, and conclude that both small and giant LSB galaxies may reveal themselves as VTD, edge-on galaxies. Our VTD galaxies are mostly bulgeless, and those with large radial scale length tend to have redder colors. We performed spectral observations of 22 VTD galaxies with the Dual Imaging Spectrograph on the 3.5m telescope at the Apache Point Observatory. The spectra with good resolution (R ~ 5000) allow us to determine the distance and the ionized gas rotation curve maximum for the galaxies. Our VTD galaxies have low dust content, in contrast to regular disc galaxies. Apparently, VTD galaxies reside in specific cosmological low-density environments and tend to have less connection with filaments. Comparing a toy model that assumes marginally low star formation in galactic discs with obtained gas kinematics data, we conclude that there is a threshold central surface density of about 88 Mo/pc**2, which we observe in the case of very thin, rotationally supported galactic discs.
We study the X-ray spectra of a sample of 19 obscured, optically-selected Seyfert galaxies (Sy 1.8, 1.9 and 2) in the local universe ($d leq 175$~Mpc), drawn from the CfA Seyfert sample. Our analysis is driven by the high sensitivity of NuSTAR in the hard X-rays, coupled with soft X-ray spectra using XMM-Newton, Chandra, Suzaku, and Swift/XRT. We also analyze the optical spectra of these sources in order to obtain accurate mass estimates and Eddington fractions. We employ four different models to analyze the X-ray spectra of these sources, which all result in consistent results. We find that 79-90 % of the sources are heavily obscured with line-of-sight column density $N_{rm H} > 10^{23}~rm cm^{-2}$. We also find a Compton-thick ($N_{rm H} > 10^{24}~rm cm^{-2}$) fraction of $37-53$ %. These results are consistent with previous estimates based on multi-wavelength analyses. We find that the fraction of reprocessed to intrinsic emission is positively correlated with $N_{rm H}$ and negatively correlated with the intrinsic, unabsorbed, X-ray luminosity (in agreement with the Iwasawa-Taniguchi effect). Our results support the hypothesis that radiation pressure regulates the distribution of the circumnuclear material.
We present an X-ray spectral analysis of a sample of 8 bona-fide Seyfert 2 galaxies, selected on the basis of their high $[OIII]lambda5007$ flux, from the Ho et al. (1997) spectroscopic sample of nearby galaxies. We find that, in general, the X-ray s pectra of our Seyfert 2 galaxies are complex, with some our objects having spectra different from the typical spectrum of X-ray selected Seyfert 2 galaxies. Two (NGC3147 and NGC4698) show no evidence for intrinsic absorption. We suggest this is due to the fact that when the torus suppresses the intrinsic medium and hard energy flux, underlying emission from the host galaxy, originating in circumnuclear starbursts, and scattering from warm absorbers contributes in these energy bands more significantly. Our asca data alone cannot discriminate whether low absorption objects are Compton-thick AGN with a strong scattered component or lack an obscuring torus. The most striking example of our low absorption Seyfert 2 is NGC4698. Its spectrum could be explained by either a dusty warm absorber or a lack of broad line clouds so that its appearance as a Seyfert 2 is intrinsic and not due to absorption.
221 - D. Stern 2014
We report on a NuSTAR and XMM-Newton program that has observed a sample of three extremely luminous, heavily obscured WISE-selected AGN at z~2 in a broad X-ray band (0.1 - 79 keV). The parent sample, selected to be faint or undetected in the WISE 3.4 um (W1) and 4.6um (W2) bands but bright at 12um (W3) and 22um (W4), are extremely rare, with only ~1000 so-called W1W2-dropouts across the extragalactic sky. Optical spectroscopy reveals typical redshifts of z~2 for this population, implying rest-frame mid-IR luminosities of L(6um)~6e46 erg/s and bolometric luminosities that can exceed L(bol)~1e14 L(sun). The corresponding intrinsic, unobscured hard X-ray luminosities are L(2-10)~4e45 erg/s for typical quasar templates. These are amongst the most luminous AGN known, though the optical spectra rarely show evidence of a broad-line region and the selection criteria imply heavy obscuration even at rest-frame 1.5um. We designed our X-ray observations to obtain robust detections for gas column densities N(H)<1e24 /cm2. In fact, the sources prove to be fainter than these predictions. Two of the sources were observed by both NuSTAR and XMM-Newton, with neither being detected by NuSTAR and one being faintly detected by XMM-Newton. A third source was observed only with XMM-Newton, yielding a faint detection. The X-ray data require gas column densities N(H)>1e24 /cm2, implying the sources are extremely obscured, consistent with Compton-thick, luminous quasars. The discovery of a significant population of heavily obscured, extremely luminous AGN does not conform to the standard paradigm of a receding torus, in which more luminous quasars are less likely to be obscured. If a larger sample conforms with this finding, then this suggests an additional source of obscuration for these extreme sources.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا