ﻻ يوجد ملخص باللغة العربية
Solar-like oscillations are excited in cool stars with convective envelopes and provide a powerful tool to constrain fundamental stellar properties and interior physics. We provide a brief history of the detection of solar-like oscillations, focusing in particular on the space-based photometry revolution started by the CoRoT and Kepler Missions. We then discuss some of the lessons learned from these missions, and highlight the continued importance of smaller space telescopes such as BRITE constellation to characterize very bright stars with independent observational constraints. As an example, we use BRITE observations to measure a tentative surface rotation period of 28.3+/-0.5 days for alpha Cen A, which has so far been poorly constrained. We also discuss the expected yields of solar-like oscillators from the TESS Mission, demonstrating that TESS will complement Kepler by discovering oscillations in a large number of nearby subgiants, and present first detections of oscillations in TESS exoplanet host stars.
We have measured solar-like oscillations in red giants using time-series photometry from the first 34 days of science operations of the Kepler Mission. The light curves, obtained with 30-minute sampling, reveal clear oscillations in a large sample of
We present a novel method for estimating lower-limit surface gravities log g of Kepler targets whose data do not allow the detection of solar-like oscillations. The method is tested using an ensemble of solar-type stars observed in the context of the
Since the onset of the `space revolution of high-precision high-cadence photometry, asteroseismology has been demonstrated as a powerful tool for informing Galactic archaeology investigations. The launch of the NASA TESS mission has enabled seismic-b
We report the discovery of an intermediate-mass transiting brown dwarf, TOI-503b, from the TESS mission. TOI-503b is the first brown dwarf discovered by TESS and orbits a metallic-line A-type star with a period of $P=3.6772 pm 0.0001$ days. The light
We present a brief overview of the history of attempts to obtain a clear detection of solar-like oscillations in cluster stars, and discuss the results on the first clear detection, which was made by the Kepler Asteroseismic Science Consortium (KASC) Working Group 2.