ترغب بنشر مسار تعليمي؟ اضغط هنا

Limits on surface gravities of Kepler planet-candidate host stars from non-detection of solar-like oscillations

175   0   0.0 ( 0 )
 نشر من قبل Tiago Campante
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a novel method for estimating lower-limit surface gravities log g of Kepler targets whose data do not allow the detection of solar-like oscillations. The method is tested using an ensemble of solar-type stars observed in the context of the Kepler Asteroseismic Science Consortium. We then proceed to estimate lower-limit log g for a cohort of Kepler solar-type planet-candidate host stars with no detected oscillations. Limits on fundamental stellar properties, as provided by this work, are likely to be useful in the characterization of the corresponding candidate planetary systems. Furthermore, an important byproduct of the current work is the confirmation that amplitudes of solar-like oscillations are suppressed in stars with increased levels of surface magnetic activity.



قيم البحث

اقرأ أيضاً

Our understanding of magnetic fields in late-type stars is strongly driven by what we know of the solar magnetic field. For this reason, it is crucial to understand how typical the solar dynamo is. To do this we need to compare the solar magnetic fie ld with that of other stars as similar to the Sun as possible, both in stellar parameters and age, hence activity. We present here the detection of a magnetic field in three planet-hosting solar-like stars having a mass, age, and activity level comparable to that of the Sun. We used the HARPSpol spectropolarimeter to obtain high-resolution high-quality circularly polarised spectra of HD 70642, HD 117207, and HD 154088, using the Least-Squares Deconvolution technique to detect the magnetic field. From the Stokes I spectra, we calculated the logR activity index for each star. We compared the position of the stars in the Hertzsprung-Russell diagram to evolutionary tracks, to estimate their mass and age. We used the lithium abundance, derived from the Stokes I spectra, to further constrain the ages. We obtained a definite magnetic field detection for both HD 70642 and HD 154088, while for HD 117207 we obtained a marginal detection. Due to the lower signal-to-noise ratio of the observations, we were unable to detect the magnetic field in the second set of observations available for HD 117207 and HD 154088. On the basis of effective temperature, mass, age, and activity level the three stars can be considered solar analogs. HD 70642, HD 117207, and HD 154088 are ideal targets for a comparative study between the solar magnetic field and that of solar analogs.
Asteroseismology of stars in clusters has been a long-sought goal because the assumption of a common age, distance and initial chemical composition allows strong tests of the theory of stellar evolution. We report results from the first 34 days of sc ience data from the Kepler Mission for the open cluster NGC 6819 -- one of four clusters in the field of view. We obtain the first clear detections of solar-like oscillations in the cluster red giants and are able to measure the large frequency separation and the frequency of maximum oscillation power. We find that the asteroseismic parameters allow us to test cluster-membership of the stars, and even with the limited seismic data in hand, we can already identify four possible non-members despite their having a better than 80% membership probability from radial velocity measurements. We are also able to determine the oscillation amplitudes for stars that span about two orders of magnitude in luminosity and find good agreement with the prediction that oscillation amplitudes scale as the luminosity to the power of 0.7. These early results demonstrate the unique potential of asteroseismology of the stellar clusters observed by Kepler.
We report rotation periods, variability characteristics, gyrochronological ages for ~950 of the Kepler Object of Interest host stars. We find a wide dispersion in the amplitude of the photometric variability as a function of rotation, likely indicati ng differences in the spot distribution among stars. We use these rotation periods in combination with published spectroscopic measurements of vsini and stellar parameters to derive the stellar inclination in the line-of-sight, and find a number of systems with possible spin-orbit misalignment. We additionally find several systems with close-in planet candidates whose stellar rotation periods are equal to or twice the planetary orbital period, indicative of possible tidal interactions between these planets and their parent stars. If these systems survive validation to become confirmed planets, they will provide important clues to the evolutionary history of these systems.
The stellar magnetic field plays a crucial role in the star internal mechanisms, as in the interactions with its environment. The study of starspots provides information about the stellar magnetic field, and can characterise the cycle. Moreover, the analysis of solar-type stars is also useful to shed light onto the origin of the solar magnetic field. The objective of this work is to characterise the magnetic activity of stars. Here, we studied two solar-type stars Kepler-17 and Kepler-63 using two methods to estimate the magnetic cycle length. The first one characterises the spots (radius, intensity, and location) by fitting the small variations in the light curve of a star caused by the occultation of a spot during a planetary transit. This approach yields the number of spots present in the stellar surface and the flux deficit subtracted from the star by their presence during each transit. The second method estimates the activity from the excess in the residuals of the transit lightcurves. This excess is obtained by subtracting a spotless model transit from the lightcurve, and then integrating all the residuals during the transit. The presence of long term periodicity is estimated in both time series. With the first method, we obtained $P_{rm cycle}$ = 1.12 $pm$ 0.16 yr (Kepler-17) and $P_{rm cycle}$ = 1.27 $pm$ 0.16 yr (Kepler-63), and for the second approach the values are 1.35 $pm$ 0.27 yr and 1.27 $pm$ 0.12 yr, respectively. The results of both methods agree with each other and confirm their robustness.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا