ﻻ يوجد ملخص باللغة العربية
Fault-tolerant schemes can use error correction to make a quantum computation arbitrarily ac- curate, provided that errors per physical component are smaller than a certain threshold and in- dependent of the computer size. However in current experiments, physical resource limitations like energy, volume or available bandwidth induce error rates that typically grow as the computer grows. Taking into account these constraints, we show that the amount of error correction can be opti- mized, leading to a maximum attainable computational accuracy. We find this maximum for generic situations where noise is scale-dependent. By inverting the logic, we provide experimenters with a tool to finding the minimum resources required to run an algorithm with a given computational accuracy. When combined with a full-stack quantum computing model, this provides the basis for energetic estimates of future large-scale quantum computers.
Small, out-of-equilibrium, and quantum systems defy simple thermodynamic expressions. Such systems are exemplified by molecular switches, which exchange heat with a bath. These molecules can photoisomerize, or change conformation, or switch, upon abs
$mathbb{Z}_d$ Parafermions are exotic non-Abelian quasiparticles generalizing Majorana fermions, which correspond to the case $d=2$. In contrast to Majorana fermions, braiding of parafermions with $d>2$ allows to perform an entangling gate. This has
We propose a method for the implementation of one-way quantum computing in superconducting circuits. Measurement-based quantum computing is a universal quantum computation paradigm in which an initial cluster-state provides the quantum resource, whil
Quantum computing is on the verge of a transition from fundamental research to practical applications. Yet, to make the step to large-scale quantum computation, an extensible qubit system has to be developed. In classical semiconductor technology, th
Building a quantum computer that surpasses the computational power of its classical counterpart is a great engineering challenge. Quantum software optimizations can provide an accelerated pathway to the first generation of quantum computing applicati