ﻻ يوجد ملخص باللغة العربية
$mathbb{Z}_d$ Parafermions are exotic non-Abelian quasiparticles generalizing Majorana fermions, which correspond to the case $d=2$. In contrast to Majorana fermions, braiding of parafermions with $d>2$ allows to perform an entangling gate. This has spurred interest in parafermions and a variety of condensed matter systems have been proposed as potential hosts for them. In this work, we study the computational power of braiding parafermions more systematically. We make no assumptions on the underlying physical model but derive all our results from the algebraical relations that define parafermions. We find a familiy of $2d$ representations of the braid group that are compatible with these relations. The braiding operators derived this way reproduce those derived previously from physical grounds as special cases. We show that if a $d$-level qudit is encoded in the fusion space of four parafermions, braiding of these four parafermions allows to generate the entire single-qudit Clifford group (up to phases), for any $d$. If $d$ is odd, then we show that in fact the entire many-qudit Clifford group can be generated.
We suggest a new method for quantum optical control with nanoscale resolution. Our method allows for coherent far-field manipulation of individual quantum systems with spatial selectivity that is not limited by the wavelength of radiation and can, in
Quantum pumping, in its different forms, is attracting attention from different fields, from fundamental quantum mechanics, to nanotechnology, to superconductivity. We investigate the crossover of quantum pumping from the adiabatic to the anti-adiaba
Read-Rezayi fractional quantum Hall states are among the prime candidates for realizing non-Abelian anyons which in principle can be used for topological quantum computation. We present a prescription for efficiently finding braids which can be used
Quasiparticle poisoning, expected to arise during the measurement of Majorana zero mode state, poses a fundamental problem towards the realization of Majorana-based quantum computation. Parafermions, a natural generalization of Majorana fermions, can
In a topological quantum computer, universal quantum computation is performed by dragging quasiparticle excitations of certain two dimensional systems around each other to form braids of their world lines in 2+1 dimensional space-time. In this paper