ﻻ يوجد ملخص باللغة العربية
In this paper, we study modular categories whose Galois group actions on their simple objects are transitive. We show that such modular categories admit unique factorization into prime transitive factors. The representations of $SL_2(mathbb{Z})$ associated with transitive modular categories are proven to be minimal and irreducible. Together with the Verlinde formula, we characterize prime transitive modular categories as the Galois conjugates of the adjoint subcategory of the quantum group modular category $mathcal{C}(mathfrak{sl}_2,p-2)$ for some prime $p > 3$. As a consequence, we completely classify transitive modular categories. Transitivity of super-modular categories can be similarly defined. A unique factorization of any transitive super-modular category into s-simple transitive factors is obtained, and the split transitive super-modular categories are completely classified.
The definitions of the $n^{th}$ Gauss sum and the associated $n^{th}$ central charge are introduced for premodular categories $mathcal{C}$ and $ninmathbb{Z}$. We first derive an expression of the $n^{th}$ Gauss sum of a modular category $mathcal{C}$,
By considering a generalisation of the CPM construction, we develop an infinite hierarchy of probabilistic theories, exhibiting compositional decoherence structures which generalise the traditional quantum-to-classical transition. Analogously to the
For a finite-index $mathrm{II}_1$ subfactor $N subset M$, we prove the existence of a universal Hopf $ast$-algebra (or, a discrete quantum group in the analytic language) acting on $M$ in a trace-preserving fashion and fixing $N$ pointwise. We call t
We study novel invariants of modular categories that are beyond the modular data, with an eye towards a simple set of complete invariants for modular categories. Our focus is on the $W$-matrix--the quantum invariant of a colored framed Whitehead link
It has been conjectured that every $(2+1)$-TQFT is a Chern-Simons-Witten (CSW) theory labelled by a pair $(G,lambda)$, where $G$ is a compact Lie group, and $lambda in H^4(BG;Z)$ a cohomology class. We study two TQFTs constructed from Jones subfactor