ترغب بنشر مسار تعليمي؟ اضغط هنا

Generic and Mod p Kazhdan-Lusztig Theory for GL_2

134   0   0.0 ( 0 )
 نشر من قبل Tobias Schmidt
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Let $F$ be a non-archimedean local field with residue field $mathbb{F}_q$ and let $G = GL_2/F$. Let $mathbf{q}$ be an indeterminate and let $H^{(1)}(mathbf{q})$ be Vigneras generic pro-p Iwahori-Hecke algebra of the p-adic group $G(F)$. Let $V_{widehat{G}}$ be the Vinberg monoid of the dual group of $G$. We establish a generic version for $H^{(1)}(mathbf{q})$ of the Kazhdan-Lusztig-Ginzburg antispherical representation, the Bernstein map and the Satake isomorphism. We define the flag variety for the monoid $V_{widehat{G}}$ and establish the characteristic map in its equivariant K-theory. These generic constructions recover the classical ones after the specialization $mathbf{q} = q in mathbb{C}$. At $mathbf{q} = q = 0 inoverline{mathbb{F}}_q$, the antispherical map provides a dual parametrization of all the irreducible $H^{(1)}_{overline{mathbb{F}}_q}(0)$-modules. This work supersedes our earlier work arXiv:1907.08808. We explain the relationship between the two articles in the introduction.



قيم البحث

اقرأ أيضاً

This is the sequel to arXiv:2007.01364v1. Let $F$ be any local field with residue characteristic $p>0$, and $mathcal{H}^{(1)}_{overline{mathbb{F}}_p}$ be the mod $p$ pro-$p$-Iwahori Hecke algebra of $mathbf{GL_2}(F)$. In arXiv:2007.01364v1 we have co nstructed a parametrization of the $mathcal{H}^{(1)}_{overline{mathbb{F}}_p}$-modules by certain $widehat{mathbf{GL_2}}(overline{mathbb{F}}_p)$-Satake parameters, together with an antispherical family of $mathcal{H}^{(1)}_{overline{mathbb{F}}_p}$-modules. Here we let $F=mathbb{Q}_p$ (and $pgeq 5$) and construct a morphism from $widehat{mathbf{GL_2}}(overline{mathbb{F}}_p)$-Satake parameters to $widehat{mathbf{GL_2}}(overline{mathbb{F}}_p)$-Langlands parameters. As a result, we get a version in families of Breuils semisimple mod $p$ Langlands correspondence for $mathbf{GL_2}(mathbb{Q}_p)$ and of Pav{s}k={u}nas parametrization of blocks of the category of mod $p$ locally admissible smooth representations of $mathbf{GL_2}(mathbb{Q}_p)$ having a central character. The formulation of these results is possible thanks to the Emerton-Gee moduli space of semisimple $widehat{mathbf{GL_2}}(overline{mathbb{F}}_p)$-representations of the Galois group ${rm Gal}(overline{mathbb{Q}}_p/ mathbb{Q}_p)$.
Let $F$ be a p-adic local field and $G=GL_2(F)$. Let $mathcal{H}^{(1)}$ be the pro-p Iwahori-Hecke algebra of $G$ with coefficients in an algebraic closure of $mathbb{F}_p$. We show that the supersingular irreducible $mathcal{H}^{(1)}$-modules of dim ension 2 can be realized through the equivariant cohomology of the flag variety of the mod p Langlands dual group of $G$.
124 - Adrian Vasiu 2003
Let $k$ be an algebraically closed field of positive characteristic $p$. We first classify the $D$-truncations mod $p$ of Shimura $F$-crystals over $k$ and then we study stratifications defined by inner isomorphism classes of these $D$-truncations. T his generalizes previous works of Kraft, Ekedahl, Oort, Moonen, and Wedhorn. As a main tool we introduce and study Bruhat $F$-decompositions; they generalize the combined form of Steinberg theorem and of classical Bruhat decompositions for reductive groups over $k$.
298 - Zhiwei Yun 2020
We introduce the notion of minimal reduction type of an affine Springer fiber, and use it to define a map from the set of conjugacy classes in the Weyl group to the set of nilpotent orbits. We show that this map is the same as the one defined by Lusz tig, and that the Kazhdan-Lusztig map is a section of our map. This settles several conjectures in the literature. For classical groups, we prove more refined results by introducing and studying the ``skeleta of affine Springer fibers.
We study classes determined by the Kazhdan-Lusztig basis of the Hecke algebra in the $K$-theory and hyperbolic cohomology theory of flag varieties. We first show that, in $K$-theory, the two different choices of Kazhdan-Lusztig bases produce dual bas es, one of which can be interpreted as characteristic classes of the intersection homology mixed Hodge modules. In equivariant hyperbolic cohomology, we show that if the Schubert variety is smooth, then the class it determines coincides with the class of the Kazhdan-Lusztig basis; this was known as the Smoothness Conjecture. For Grassmannians, we prove that the classes of the Kazhdan-Lusztig basis coincide with the classes determined by Zelevinskys small resolutions. These properties of the so-called KL-Schubert basis show that it is the closest existing analogue to the Schubert basis for hyperbolic cohomology; the latter is a very useful testbed for more general elliptic cohomologies.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا