ﻻ يوجد ملخص باللغة العربية
Let $F$ be a p-adic local field and $G=GL_2(F)$. Let $mathcal{H}^{(1)}$ be the pro-p Iwahori-Hecke algebra of $G$ with coefficients in an algebraic closure of $mathbb{F}_p$. We show that the supersingular irreducible $mathcal{H}^{(1)}$-modules of dimension 2 can be realized through the equivariant cohomology of the flag variety of the mod p Langlands dual group of $G$.
Let $F$ be a non-archimedean local field with residue field $mathbb{F}_q$ and let $G = GL_2/F$. Let $mathbf{q}$ be an indeterminate and let $H^{(1)}(mathbf{q})$ be Vigneras generic pro-p Iwahori-Hecke algebra of the p-adic group $G(F)$. Let $V_{wideh
This is the sequel to arXiv:2007.01364v1. Let $F$ be any local field with residue characteristic $p>0$, and $mathcal{H}^{(1)}_{overline{mathbb{F}}_p}$ be the mod $p$ pro-$p$-Iwahori Hecke algebra of $mathbf{GL_2}(F)$. In arXiv:2007.01364v1 we have co
Let $k$ be an algebraically closed field of positive characteristic $p$. We first classify the $D$-truncations mod $p$ of Shimura $F$-crystals over $k$ and then we study stratifications defined by inner isomorphism classes of these $D$-truncations. T
Let $p$ be a prime number, $F$ a totally real number field unramified at places above $p$ and $D$ a quaternion algebra of center $F$ split at places above $p$ and at no more than one infinite place. Let $v$ be a fixed place of $F$ above $p$ and $over
Let G be a split semi-simple p-adic group and let H be its Iwahori-Hecke algebra with coefficients in the algebraic closure k of the finite field with p elements. Let F be the affine flag variety over k associated with G. We show, in the simply conne