ﻻ يوجد ملخص باللغة العربية
Nowadays, electrochemical reduction of CO$_2$ has been considered as an effective method to solve the problem of global warming. The primary challenge in studying the mechanism is to determine the adsorption states of CO$_2$, since complicated metal surfaces often result in many different adsorption sites. Based on the density functional theory (DFT) calculations, we performed a theoretical study on the adsorption of CO$_2$ on the Ag electrode surface. The results show that the adsorption populations of CO$_2$ are extremely sensitive to the adsorption sites. Importantly, we found that the preferable adsorption positions are the terrace sites, rather than the previous reported step sites. The adsorption populations were found with the order of (211) > (110) > (111) > (100). Subsequently, the adsorption characteristics were correlated with the d-band theory and the charge transfers between Ag surfaces and CO$_2$.
We report that metal-free phthalocyanine (H2Pc) molecules with a central cavity are able to incorporate Ag atoms from an Ag(110) surface thus creating silver-phthalocyanine (AgPc). The reaction was investigated by means of scanning tunneling microsco
The interaction of CO with the Fe3O4(001)-(rt2xrt2)R45{deg} surface was studied using temperature programmed desorption (TPD), scanning tunneling microscopy (STM) and x-ray photoelectron spectroscopy (XPS), the latter both under ultrahigh vacuum (UHV
The adsorption of atomic oxygen and its inclusion into subsurface sites on Ag(210) and Ag(410) surfaces have been investigated using density functional theory. We find that--in the absence of adatoms on the first metal layer--subsurface adsorption re
The first principles density functional theory (DFT) is applied to study effects of molecular adsorption on optical losses of silver (111) surface. The ground states of the systems including water, methanol, and ethanol molecules adsorbed on Ag (111)
The adsorption of thienylenevinylene oligomers on the Si(100) surface has been investigated using scanning tunneling microscopy. The mode of substitution of the thiophene ring exerts a strong influence on the adsorption configurations and the images