ترغب بنشر مسار تعليمي؟ اضغط هنا

Observation of exciton-exciton interaction mediated valley depolarization in monolayer MoSe$_2$

147   0   0.0 ( 0 )
 نشر من قبل Fahad Mahmood
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The valley pseudospin in monolayer transition metal dichalcogenides (TMDs) has been proposed as a new way to manipulate information in various optoelectronic devices. This relies on a large valley polarization that remains stable over long timescales (hundreds of ns). However, time resolved measurements report valley lifetimes of only a few ps. This has been attributed to mechanisms such as phonon-mediated inter-valley scattering and a precession of the valley psedospin through electron-hole exchange. Here we use transient spin grating to directly measure the valley depolarization lifetime in monolayer MoSe$_{2}$. We find a fast valley decay rate that scales linearly with the excitation density at different temperatures. This establishes the presence of strong exciton-exciton Coulomb exchange interactions enhancing the valley depolarization. Our work highlights the microscopic processes inhibiting the efficient use of the exciton valley pseudospin in monolayer TMDs.



قيم البحث

اقرأ أيضاً

The valley degree of freedom is a sought-after quantum number in monolayer transition-metal dichalcogenides. Similar to optical spin orientation in semiconductors, the helicity of absorbed photons can be relayed to the valley (pseudospin) quantum num ber of photoexcited electrons and holes. Also similar to the quantum-mechanical spin, the valley quantum number is not a conserved quantity. Valley depolarization of excitons in monolayer transition-metal dichalcogenides due to long-range electron-hole exchange typically takes a few ps at low temperatures. Exceptions to this behavior are monolayers MoSe$_2$ and MoTe$_2$ wherein the depolarization is much faster. We elucidate the enigmatic anomaly of these materials, finding that it originates from Rashba-induced coupling of the dark and bright exciton branches next to their degeneracy point. When photoexcited excitons scatter during their energy relaxation between states next to the degeneracy region, they reach the light cone after losing the initial helicity. The valley depolarization is not as fast in monolayers WSe$_2$, WS$_2$ and likely MoS$_2$ wherein the Rashba-induced coupling is negligible.
In transition metal dichalcogenides layers of atomic scale thickness, the electron-hole Coulomb interaction potential is strongly influenced by the sharp discontinuity of the dielectric function across the layer plane. This feature results in peculia r non-hydrogenic excitonic states, in which exciton-mediated optical nonlinearities are predicted to be enhanced as compared to their hydrogenic counterpart. To demonstrate this enhancement, we performed optical transmission spectroscopy of a MoSe$_2$ monolayer placed in the strong coupling regime with the mode of an optical microcavity, and analyzed the results quantitatively with a nonlinear input-output theory. We find an enhancement of both the exciton-exciton interaction and of the excitonic fermionic saturation with respect to realistic values expected in the hydrogenic picture. Such results demonstrate that unconventional excitons in MoSe$_2$ are highly favourable for the implementation of large exciton-mediated optical nonlinearities, potentially working up to room temperature.
268 - Gerd Plechinger , Tobias Korn , 2017
Semiconducting transition metal dichalcogenide monolayers have emerged as promising candidates for future valleytronics-based quantum information technologies. Two distinct momentum-states of tightly-bound electron-hole pairs in these materials can b e deterministically initialized via irradiation with circularly polarized light. Here, we investigate the ultrafast dynamics of such a valley polarization in monolayer tungsten diselenide by means of time-resolved Kerr reflectometry. The observed Kerr signal in our sample stems exclusively from charge-neutral excitons. Our findings support the picture of a fast decay of the valley polarization of bright excitons due to radiative recombination, intra-conduction-band spin-flip transitions, intervalley-scattering processes, and the formation of long-lived valley-polarized dark states.
84 - Yao Li , G. Li , Xiaokun Zhai 2020
By pumping nonresonantly a MoS$_2$ monolayer at $13$ K under a circularly polarized cw laser, we observe exciton energy redshifts that break the degeneracy between B excitons with opposite spin. The energy splitting increases monotonically with the l aser power reaching as much as $18$ meV, while it diminishes with the temperature. The phenomenon can be explained theoretically by considering simultaneously the bandgap renormalization which gives rise to the redshift and exciton-exciton Coulomb exchange interaction which is responsible for the spin-dependent splitting. Our results offer a simple scheme to control the valley degree of freedom in MoS$_2$ monolayer and provide an accessible method in investigating many-body exciton exciton interaction in such materials.
Excitons, Coulomb bound electron-hole pairs, are composite bosons and their interactions in traditional semiconductors lead to condensation and light amplification. The much stronger Coulomb interaction in transition metal dichalcogenides such as WSe $_2$ monolayers combined with the presence of the valley degree of freedom is expected to provide new opportunities for controlling excitonic effects. But so far the bosonic character of exciton scattering processes remains largely unexplored in these two-dimensional (2D) materials. Here we show that scattering between B-excitons and A-excitons preferably happens within the same valley in momentum space. This leads to power dependent, negative polarization of the hot B-exciton emission. We use a selective upconversion technique for efficient generation of B-excitons in the presence of resonantly excited A-excitons at lower energy, we also observe the excited A-excitons state $2s$. Detuning of the continuous wave, low power laser excitation outside the A-exciton resonance (with a full width at half maximum of 4 meV) results in vanishing upconversion signal.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا