ﻻ يوجد ملخص باللغة العربية
Policy-based signatures (PBS) were proposed by Bellare and Fuchsbauer (PKC 2014) to allow an {em authorized} member of an organization to sign a message on behalf of the organization. The users authorization is determined by a policy managed by the organizations trusted authority, while the signature preserves the privacy of the organizations policy. Signing keys in PBS do not include user identity information and thus can be passed to others, violating the intention of employing PBS to restrict users signing capability. In this paper, we introduce the notion of {em traceability} for PBS by including user identity in the signing key such that the trusted authority will be able to open a suspicious signature and recover the signers identity should the needs arise. We provide rigorous definitions and stringent security notions of traceable PBS (TPBS), capturing the properties of PBS suggested by Bellare-Fuchsbauer and resembling the full traceability requirement for group signatures put forward by Bellare-Micciancio-Warinschi (Eurocrypt 2003). As a proof of concept, we provide a modular construction of TPBS, based on a signature scheme, an encryption scheme and a zero-knowledge proof system. Furthermore, to demonstrate the feasibility of achieving TPBS from concrete, quantum-resistant assumptions, we give an instantiation based on lattices.
Group signatures allow users of a group to sign messages anonymously in the name of the group, while incorporating a tracing mechanism to revoke anonymity and identify the signer of any message. Since its introduction by Chaum and van Heyst (EUROCRYP
Group signature is a fundamental cryptographic primitive, aiming to protect anonymity and ensure accountability of users. It allows group members to anonymously sign messages on behalf of the whole group, while incorporating a tracing mechanism to id
The concept of universal designated verifier signatures was introduced by Steinfeld, Bull, Wang and Pieprzyk at Asiacrypt 2003. These signatures can be used as standard publicly verifiable digital signatures but have an additional functionality which
As networks expand in size and complexity, they pose greater administrative and management challenges. Software Defined Networks (SDN) offer a promising approach to meeting some of these challenges. In this paper, we propose a policy driven security
In this work, we provide the first lattice-based group signature that offers full dynamicity (i.e., users have the flexibility in joining and leaving the group), and thus, resolve a prominent open problem posed by previous works. Moreover, we achieve