ﻻ يوجد ملخص باللغة العربية
The concept of universal designated verifier signatures was introduced by Steinfeld, Bull, Wang and Pieprzyk at Asiacrypt 2003. These signatures can be used as standard publicly verifiable digital signatures but have an additional functionality which allows any holder of a signature to designate the signature to any desired verifier. This designated verifier can check that the message was indeed signed, but is unable to convince anyone else of this fact. We propose new efficient constructions for pairing-based short signatures. Our first scheme is based on Boneh-Boyen signatures and its security can be analyzed in the standard security model. We prove its resistance to forgery assuming the hardness of the so-called strong Diffie-Hellman problem, under the knowledge-of-exponent assumption. The second scheme is compatible with the Boneh-Lynn-Shacham signatures and is proven unforgeable, in the random oracle model, under the assumption that the computational bilinear Diffie-Hellman problem is untractable. Both schemes are designed for devices with constrained computation capabilities since the signing and the designation procedure are pairing-free. Finally, we present extensions of these schemes in the multi-user setting proposed by Desmedt in 2003.
In 1998, Blaze, Bleumer, and Strauss suggested a cryptographic primitive named proxy re-signatures where a proxy turns a signature computed under Alices secret key into one from Bob on the same message. The semi-trusted proxy does not learn either pa
In this paper we introduce a variant of the Syndrome Decoding Problem (SDP), that we call Restricted SDP (R-SDP), in which the entries of the searched vector are defined over a subset of the underlying finite field. We prove the NP-completeness of R-
Policy-based signatures (PBS) were proposed by Bellare and Fuchsbauer (PKC 2014) to allow an {em authorized} member of an organization to sign a message on behalf of the organization. The users authorization is determined by a policy managed by the o
In this work, we provide the first lattice-based group signature that offers full dynamicity (i.e., users have the flexibility in joining and leaving the group), and thus, resolve a prominent open problem posed by previous works. Moreover, we achieve
Group signatures allow users of a group to sign messages anonymously in the name of the group, while incorporating a tracing mechanism to revoke anonymity and identify the signer of any message. Since its introduction by Chaum and van Heyst (EUROCRYP