ﻻ يوجد ملخص باللغة العربية
The celebrated result of Fischer, Lynch and Paterson is the fundamental lower bound for asynchronous fault tolerant computation: any 1-crash resilient asynchronous agreement protocol must have some (possibly measure zero) probability of not terminating. In 1994, Ben-Or, Kelmer and Rabin published a proof-sketch of a lesser known lower bound for asynchronous fault tolerant computation with optimal resilience against a Byzantine adversary: if $nle 4t$ then any t-resilient asynchronous verifiable secret sharing protocol must have some non-zero probability of not terminating. Our main contribution is to revisit this lower bound and provide a rigorous and more general proof. Our second contribution is to show how to avoid this lower bound. We provide a protocol with optimal resilience that is almost surely terminating for a strong common coin functionality. Using this new primitive we provide an almost surely terminating protocol with optimal resilience for asynchronous Byzantine agreement that has a new fair validity property. To the best of our knowledge this is the first asynchronous Byzantine agreement with fair validity in the information theoretic setting.
Reliable qubits are difficult to engineer, but standard fault-tolerance schemes use seven or more physical qubits to encode each logical qubit, with still more qubits required for error correction. The large overhead makes it hard to experiment with
We explain how to combine holonomic quantum computation (HQC) with fault tolerant quantum error correction. This establishes the scalability of HQC, putting it on equal footing with other models of computation, while retaining the inherent robustness the method derives from its geometric nature.
Consider a complete communication network of $n$ nodes, where the nodes receive a common clock pulse. We study the synchronous $c$-counting problem: given any starting state and up to $f$ faulty nodes with arbitrary behaviour, the task is to eventual
We study how dynamical decoupling (DD) pulse sequences can improve the reliability of quantum computers. We prove upper bounds on the accuracy of DD-protected quantum gates and derive sufficient conditions for DD-protected gates to outperform unprote
The scalability of photonic implementations of fault-tolerant quantum computing based on Gottesman-Kitaev-Preskill (GKP) qubits is injured by the requirements of inline squeezing and reconfigurability of the linear optical network. In this work we pr