ترغب بنشر مسار تعليمي؟ اضغط هنا

Avoided quasiparticle decay and enhanced excitation continuum in the spin-1/2 near-Heisenberg triangular antiferromagnet Ba3CoSb2O9

67   0   0.0 ( 0 )
 نشر من قبل David Macdougal
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We explore the magnetic excitations of the spin-1/2 triangular antiferromagnet Ba3CoSb2O9 in its 120 degree ordered phase using single-crystal high-resolution inelastic neutron scattering. Sharp magnons with no decay are observed throughout reciprocal space, with a strongly renormalized dispersion and multiple soft modes compared to linear spin wave theory. We propose an empirical parametrization that can quantitatively capture the complete dispersions in the three-dimensional Brillouin zone and explicitly show that the dispersion renormalizations have the direct consequence that one to two magnon decays are avoided throughout reciprocal space, whereas such decays would be allowed for the unrenormalized dispersions. At higher energies, we observe a very strong continuum of excitations with highly-structured intensity modulations extending up at least 4x the maximum one-magnon energy. The one-magnon intensities decrease much faster upon increasing energy than predicted by linear spin wave theory and the higher-energy continuum contains much more intensity than can be accounted for by a two-magnon cross-section, suggesting a significant transfer of spectral weight from the high-energy magnons into the higher-energy continuum states. We attribute the strong dispersion renormalizations and substantial transfer of spectral weight to continuum states to the effect of quantum fluctuations and interactions beyond the spin wave approximation, and make connections to theoretical approaches that might capture such effects. Finally, through measurements in a strong applied magnetic field, we find evidence for magnetic domains with opposite senses for the spin rotation in the 120 degree ordered ground state, as expected in the absence of Dzyaloshinskii-Moriya interactions, when the sense of spin rotation is selected via spontaneous symmetry breaking.



قيم البحث

اقرأ أيضاً

We study the spin liquid candidate of the spin-$1/2$ $J_1$-$J_2$ Heisenberg antiferromagnet on the triangular lattice by means of density matrix renormalization group (DMRG) simulations. By applying an external Aharonov-Bohm flux insertion in an infi nitely long cylinder, we find unambiguous evidence for gapless $U(1)$ Dirac spin liquid behavior. The flux insertion overcomes the finite size restriction for energy gaps and clearly shows gapless behavior at the expected wave-vectors. Using the DMRG transfer matrix, the low-lying excitation spectrum can be extracted, which shows characteristic Dirac cone structures of both spinon-bilinear and monopole excitations. Finally, we confirm that the entanglement entropy follows the predicted universal response under the flux insertion.
167 - R. Rawl , L. Ge , H. Agrawal 2016
The perovskite Ba8CoNb6O24 comprises equilateral effective spin-1/2 Co2+ triangular layers separated by six non-magnetic layers. Susceptibility, specific heat and neutron scattering measurements combined with high-temperature series expansions and sp in-wave calculations confirm that Ba8CoNb6O24 is basically a twodimensional (2D) magnet with no detectable spin anisotropy and no long-range magnetic ordering down to 0.06 K. In other words, Ba8CoNb6O24 is very close to be a realization of the paradigmatic spin-1/2 triangular Heisenberg model, which is not expected to exhibit symmetry breaking at finite temperature according to the Mermin and Wagner theorem.
We study effects of nonmagnetic impurities in a spin-1/2 frustrated triangular antiferromagnet with the aim of understanding the observed broadening of $^{13}$C NMR lines in the organic spin liquid material $kappa$-(ET)$_2$Cu$_2$(CN)$_3$. For high te mperatures down to $J/3$, we calculate local susceptibility near a nonmagnetic impurity and near a grain boundary for the nearest neighbor Heisenberg model in high temperature series expansion. We find that the local susceptibility decays to the uniform one in few lattice spacings, and for a low density of impurities we would not be able to explain the line broadening present in the experiments already at elevated temperatures. At low temperatures, we assume a gapless spin liquid with a Fermi surface of spinons. We calculate the local susceptibility in the mean field and also go beyond the mean field by Gutzwiller projection. The zero temperature local susceptibility decays as a power law and oscillates at $2 k_F$. As in the high temperature analysis we find that a low density of impurities is not able to explain the observed broadening of the lines. We are thus led to conclude that there is more disorder in the system. We find that a large density of point-like disorder gives broadening that is consistent with the experiment down to about 5K, but that below this temperature additional mechanism is likely needed.
We present the results of muon-spin relaxation measurements on the triangular lattice Heisenberg antiferromagnet $alpha$-KCrO$_{2}$. We observe sharp changes in behaviour at an ordering temperature of $T_{mathrm{c}}=23$ K, with an additional broad fe ature in the muon-spin relaxation rate evident at T=13 K, both of which correspond to features in the magnetic contribution to the heat capacity. This behaviour is distinct from both the Li- and Na- containing members of the series. These data may be qualitatively described with the established theoretical predictions for the underlying spin system.
We believe that a necessary first step in understanding the ground state properties of the spin-${scriptstylefrac{1}{2}}$ kagome Heisenberg antiferromagnet is a better understanding of this models very large number of low energy singlet states. A des cription of the low energy states that is both accurate and amenable for numerical work may ultimately prove to have greater value than knowing only what these properties are, in particular when these turn on the delicate balance of many small energies. We demonstrate how this program would be implemented using the basis of spin-singlet dimerized states, though other bases that have been proposed may serve the same purpose. The quality of a basis is evaluated by its participation in all the low energy singlets, not just the ground state. From an experimental perspective, and again in light of the small energy scales involved, methods that can deliver all the low energy states promise more robust predictions than methods that only refine a fraction of these states.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا