ترغب بنشر مسار تعليمي؟ اضغط هنا

Dirac Spin Liquid on the Spin-1/2 Triangular Heisenberg Antiferromagnet

128   0   0.0 ( 0 )
 نشر من قبل Yin-Chen He
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the spin liquid candidate of the spin-$1/2$ $J_1$-$J_2$ Heisenberg antiferromagnet on the triangular lattice by means of density matrix renormalization group (DMRG) simulations. By applying an external Aharonov-Bohm flux insertion in an infinitely long cylinder, we find unambiguous evidence for gapless $U(1)$ Dirac spin liquid behavior. The flux insertion overcomes the finite size restriction for energy gaps and clearly shows gapless behavior at the expected wave-vectors. Using the DMRG transfer matrix, the low-lying excitation spectrum can be extracted, which shows characteristic Dirac cone structures of both spinon-bilinear and monopole excitations. Finally, we confirm that the entanglement entropy follows the predicted universal response under the flux insertion.



قيم البحث

اقرأ أيضاً

We study the spin-$1/2$ Heisenberg model on the triangular lattice with the antiferromagnetic first ($J_1$) and second ($J_2$) nearest-neighbor interactions using density matrix renormalization group. By studying the spin correlation function, we fin d a $120^{circ}$ magnetic order phase for $J_2 lesssim 0.07 J_1$ and a stripe antiferromagnetic phase for $J_2 gtrsim 0.15 J_1$. Between these two phases, we identify a spin liquid region characterized by the exponential decaying spin and dimer correlations, as well as the large spin singlet and triplet excitation gaps on finite-size systems. We find two near degenerating ground states with distinct properties in two sectors, which indicates more than one spin liquid candidates in this region. While the sector with spinon is found to respect the time reversal symmetry, the even sector without a spinon breaks such a symmetry for finite-size systems. Furthermore, we detect the signature of the fractionalization by following the evolution of different ground states with inserting spin flux into the cylinder system. Moreover, by tuning the anisotropic bond coupling, we explore the nature of the spin liquid phase and find the optimal parameter region for the gapped $Z_2$ spin liquid.
136 - Ryui Kaneko , Satoshi Morita , 2014
We numerically study the Heisenberg models on triangular lattices by extending it from the simplest equilateral lattice with only the nearest-neighbor exchange interaction. We show that, by including an additional weak next-nearest-neighbor interacti on, a quantum spin-liquid phase is stabilized against the antiferromagnetic order. The spin gap (triplet excitation gap) and spin correlation at long distances decay algebraically with increasing system size at the critical point between the antiferromagnetic phase and the spin-liquid phase. This algebraic behavior continues in the spin-liquid phase as well, indicating the presence of an unconventional critical (algebraic spin-liquid) phase characterized by the dynamical and anomalous critical exponents $z+etasim1$. Unusually small triplet and singlet excitation energies found in extended points of the Brillouin zone impose constraints on this algebraic spin liquid.
167 - R. Rawl , L. Ge , H. Agrawal 2016
The perovskite Ba8CoNb6O24 comprises equilateral effective spin-1/2 Co2+ triangular layers separated by six non-magnetic layers. Susceptibility, specific heat and neutron scattering measurements combined with high-temperature series expansions and sp in-wave calculations confirm that Ba8CoNb6O24 is basically a twodimensional (2D) magnet with no detectable spin anisotropy and no long-range magnetic ordering down to 0.06 K. In other words, Ba8CoNb6O24 is very close to be a realization of the paradigmatic spin-1/2 triangular Heisenberg model, which is not expected to exhibit symmetry breaking at finite temperature according to the Mermin and Wagner theorem.
We study the interplay of competing interactions in spin-$1/2$ triangular Heisenberg model through tuning the first- ($J_1$), second- ($J_2$), and third-neighbor ($J_3$) couplings. Based on large-scale density matrix renormalization group calculation , we identify a quantum phase diagram of the system and discover a new {it gapless} chiral spin liquid (CSL) phase in the intermediate $J_2$ and $J_3$ regime. This CSL state spontaneously breaks time-reversal symmetry with finite scalar chiral order, and it has gapless excitations implied by a vanishing spin triplet gap and a finite central charge on the cylinder. Moreover, the central charge grows rapidly with the cylinder circumference, indicating emergent spinon Fermi surfaces. To understand the numerical results we propose a parton mean-field spin liquid state, the $U(1)$ staggered flux state, which breaks time-reversal symmetry with chiral edge modes by adding a Chern insulator mass to Dirac spinons in the $U(1)$ Dirac spin liquid. This state also breaks lattice rotational symmetries and possesses two spinon Fermi surfaces driven by nonzero $J_2$ and $J_3$, which naturally explains the numerical results. To our knowledge, this is the first example of a gapless CSL state with coexisting spinon Fermi surfaces and chiral edge states, demonstrating the rich family of novel phases emergent from competing interactions in triangular-lattice magnets.
We study effects of nonmagnetic impurities in a spin-1/2 frustrated triangular antiferromagnet with the aim of understanding the observed broadening of $^{13}$C NMR lines in the organic spin liquid material $kappa$-(ET)$_2$Cu$_2$(CN)$_3$. For high te mperatures down to $J/3$, we calculate local susceptibility near a nonmagnetic impurity and near a grain boundary for the nearest neighbor Heisenberg model in high temperature series expansion. We find that the local susceptibility decays to the uniform one in few lattice spacings, and for a low density of impurities we would not be able to explain the line broadening present in the experiments already at elevated temperatures. At low temperatures, we assume a gapless spin liquid with a Fermi surface of spinons. We calculate the local susceptibility in the mean field and also go beyond the mean field by Gutzwiller projection. The zero temperature local susceptibility decays as a power law and oscillates at $2 k_F$. As in the high temperature analysis we find that a low density of impurities is not able to explain the observed broadening of the lines. We are thus led to conclude that there is more disorder in the system. We find that a large density of point-like disorder gives broadening that is consistent with the experiment down to about 5K, but that below this temperature additional mechanism is likely needed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا