ﻻ يوجد ملخص باللغة العربية
We investigate spontaneous emission from a quantum emitter located within the mode volume of a microring resonator that features chiral exceptional points. We show that this configuration offers enough degrees of freedom to exhibit a full control to either enhance or suppress the emission process. Particularly, we demonstrate that the Purcell factor can be enhanced by a factor of two beyond its value in an identical microring operating at a diabolic point. Our conclusions, which are derived using a non-Hermitian Hamiltonian formalism, are confirmed by employing full-wave simulations of realistic photonic structures and materials. Our results offer a straightforward route to improve the performance of single photon sources using current photonics technology without the need for building optical resonators with ultrahigh quality factors or nanoscale volumes.
Engineering the transport of radiation and its interaction with matter using non-Hermiticity, particularly through spectral degeneracies known as exceptional points(EPs), is an emerging field that has both fundamental and practical implications. Chir
Planar microcavities allow the control and manipulation of spin-polarization, manifested in phenomena like the optical spin Hall effect due to the intrinsic polarization mode splitting. Here, we study a transparent microcavity with broken rotational
Chaos in semiconductor lasers or other optical systems have been intensively studied in past two decades. However, the route from period doubling to chaos is still not sufficiently visible, in particular, in gain-modulated semiconductor lasers. In th
Exceptional points in non-Hermitian systems have recently been shown to possess nontrivial topological properties, and to give rise to many exotic physical phenomena. However, most studies thus far have focused on isolated exceptional points or one-d
Sub-wavelength nanostructured systems with tunable electromagnetic properties, such as hyperbolic metamaterials (HMMs), provide a useful platform to tailor spontaneous emission processes. Here, we investigate a system comprising $Eu^{ 3+}(NO_{3})_{3}