ﻻ يوجد ملخص باللغة العربية
Exceptional points in non-Hermitian systems have recently been shown to possess nontrivial topological properties, and to give rise to many exotic physical phenomena. However, most studies thus far have focused on isolated exceptional points or one-dimensional lines of exceptional points. Here, we substantially expand the space of exceptional systems by designing two-dimensional surfaces of exceptional points, and find that symmetries are a key element to protect such exceptional surfaces. We construct them using symmetry-preserving non-Hermitian deformations of topological nodal lines, and analyze the associated symmetry, topology, and physical consequences. As a potential realization, we simulate a parity-time-symmetric 3D photonic crystal and indeed find the emergence of exceptional surfaces. Our work paves the way for future explorations of systems of exceptional points in higher dimensions.
Over the past decade, parity-time ($mathcal{PT}$)-symmetric Hamiltonians have been experimentally realized in classical, optical settings with balanced gain and loss, or in quantum systems with localized loss. In both realizations, the $mathcal{PT}$-
Parity-time (PT) symmetry has attracted a lot of attention since the concept of pseudo-Hermitian dynamics of open quantum systems was first demonstrated two decades ago. Contrary to their Hermitian counterparts, non-conservative environments a priori
In this work we first examine transverse and longitudinal fluxes in a $cal PT$-symmetric photonic dimer using a coupled-mode theory. Several surprising understandings are obtained from this perspective: The longitudinal flux shows that the $cal PT$ t
We proposed a group-theory method to calculate topological invariant in bi-isotropic photonic crystals invariant under crystallographic point group symmetries. Spin Chern number has been evaluated by the eigenvalues of rotation operators at high symm
We study interaction of a soliton in a parity-time (PT) symmetric coupler which has local perturbation of the coupling constant. Such a defect does not change the PT-symmetry of the system, but locally can achieve the exceptional point. We found that