ﻻ يوجد ملخص باللغة العربية
We statistically examine the gamma-ray burst (GRB) photon indices obtained by the Fermi-GBM and Fermi-LAT observations and compare the LAT GRB photon indices to the GBM GRB photon indices. We apply the jitter radiation to explain the GRB spectral diversities in the high-energy bands. In our model, the jitter radiative spectral index is determined by the spectral index of the turbulence. We classify GRBs into three classes depending on the shape of the GRB high-energy spectrum when we compare the GBM and LAT detections: the GRB spectrum is concave (GRBs turn out to be softer and are labeled as S-GRBs), the GRB spectrum is convex (GRBs turn out to be harder and are labeled as H-GRBs), and the GRBs have no strong spectral changes (labeled as N-GRBs). A universal Kolmogorov index 7/3 in the turbulent cascade is consistent with the photon index of the N-GRBs. The S-GRB spectra can be explained by the turbulent cascade due to the kinetic magnetic reconnection with the spectral index range of the turbulence from 8/3 to 3.0. The H-GRB spectra originate from the inverse turbulent cascade with the spectral index range of the turbulence from 2.0 to 3.5 that occurred during the large lengthscale magnetic reconnection. Thus, the GRB radiative spectra are diversified because the turbulent cascade modifies the turbulent energy spectrum. More observational samples are expected in the future to further identify our suggestions.
The number of Gamma-Ray Bursts (GRBs) detected at high energies ($sim,0.1-100$ GeV) has seen a rapid increase over the last decade, thanks to observations from the Fermi-Large Area Telescope. The improved statistics and quality of data resulted in a
Owing to narrow energy band of textit{Swift}/BAT, several urgent issues are required to pay more attentions but unsolved so far. We systematically study the properties of a refined sample of 283 textit{Swift}/BAT gamma-ray bursts with well-measured s
We calculate the high energy neutrino spectrum from gamma-ray bursts where the emission arises in a dissipative jet photosphere determined by either baryonically or magnetically dominated dynamics, and compare these neutrino spectra to those obtained
The synchrotron self-Compton (SSC) emission from Gamma-ray Burst (GRB) forward shock can extend to the very-high-energy (VHE; $E_gamma > $100 GeV) range. Such high energy photons are rare and are attenuated by the cosmic infrared background before re
Both long-duration gamma-ray bursts (LGRBs) from core collapse of massive stars and short-duration GRBs (SGRBs) from mergers of binary neutron star (BNS) or neutron star--black hole (NSBH) are expected to occur in the accretion disk of active galacti