ﻻ يوجد ملخص باللغة العربية
We calculate the high energy neutrino spectrum from gamma-ray bursts where the emission arises in a dissipative jet photosphere determined by either baryonically or magnetically dominated dynamics, and compare these neutrino spectra to those obtained in conventional internal shock models. We also calculate the diffuse neutrino spectra based on these models, which appear compatible with the current IceCube 40+59 constraints. While a re-analysis based on the models discussed here and the data from the full array would be needed, it appears that only those models with the most extreme parameters are close to being constrained at present. A multi-year operation of the full IceCube and perhaps a next generation of large volume neutrino detectors may be required in order to distinguish between the various models discussed.
Both long-duration gamma-ray bursts (LGRBs) from core collapse of massive stars and short-duration GRBs (SGRBs) from mergers of binary neutron star (BNS) or neutron star--black hole (NSBH) are expected to occur in the accretion disk of active galacti
The number of Gamma-Ray Bursts (GRBs) detected at high energies ($sim,0.1-100$ GeV) has seen a rapid increase over the last decade, thanks to observations from the Fermi-Large Area Telescope. The improved statistics and quality of data resulted in a
High-energy neutrinos are expected to originate from different stages in a gamma-ray burst (GRB) event. In this work we revisit the dissipative photospheric scenario, in which the GRB prompt emission is produced around the photospheric radius. Meanwh
It is generally believed that the variability of photospheric emission in gamma-ray bursts (GRBs) traces that of the jet power. This work further investigates the variability of photospheric emission in a variable jet. By setting a constant $eta$ (di
Gamma-ray bursts (GRBs) have been suggested as possible sources of the high-energy neutrino flux recently detected by the IceCube telescope. We revisit the fireball emission model and elaborate an analytical prescription to estimate the high-energy n