ﻻ يوجد ملخص باللغة العربية
Long-Short-Term-Memory (LSTM) networks have been used extensively for time series forecasting in recent years due to their ability of learning patterns over different periods of time. In this paper, this ability is applied to learning the pattern of Global Positioning System (GPS)-based Precipitable Water Vapor (PWV) measurements over a period of 4 hours. The trained model was evaluated on more than 1500 hours of recorded data. It achieves a root mean square error (RMSE) of 0.098 mm for a forecasting interval of 5 minutes in the future, and outperforms the naive approach for a lead-time of up to 40 minutes.
A Low Humidity and Temperature Profiling (LHATPRO) microwave radiometer, manufactured by Radiometer Physics GmbH (RPG), is used to monitor sky conditions over ESOs Paranal observatory in support of VLT science operations. The unit measures several ch
We report on the measurements of telluric water vapor made with the instrument FIFI-LS on SOFIA. Since November 2018, FIFI-LS has measured the water vapor overburden with the same measurement setup on each science flight with about 10 data points thr
The atmospheric water vapor content above the Roque de los Muchachos Observatory (ORM) obtained from Global Positioning Systems (GPS) is presented. GPS measurements have been evaluated by comparison with 940nm-radiometer observations. Statistical ana
This paper proposes a novel framework for the segmentation of phonocardiogram (PCG) signals into heart states, exploiting the temporal evolution of the PCG as well as considering the salient information that it provides for the detection of the heart
The Global Navigation Satellite Systems (GNSS) like GPS suffer from accuracy degradation and are almost unavailable in indoor environments. Indoor positioning systems (IPS) based on WiFi signals have been gaining popularity. However, owing to the str