ﻻ يوجد ملخص باللغة العربية
This paper proposes a novel framework for the segmentation of phonocardiogram (PCG) signals into heart states, exploiting the temporal evolution of the PCG as well as considering the salient information that it provides for the detection of the heart state. We propose the use of recurrent neural networks and exploit recent advancements in attention based learning to segment the PCG signal. This allows the network to identify the most salient aspects of the signal and disregard uninformative information. The proposed method attains state-of-the-art performance on multiple benchmarks including both human and animal heart recordings. Furthermore, we empirically analyse different feature combinations including envelop features, wavelet and Mel Frequency Cepstral Coefficients (MFCC), and provide quantitative measurements that explore the importance of different features in the proposed approach. We demonstrate that a recurrent neural network coupled with attention mechanisms can effectively learn from irregular and noisy PCG recordings. Our analysis of different feature combinations shows that MFCC features and their derivatives offer the best performance compared to classical wavelet and envelop features. Heart sound segmentation is a crucial pre-processing step for many diagnostic applications. The proposed method provides a cost effective alternative to labour extensive manual segmentation, and provides a more accurate segmentation than existing methods. As such, it can improve the performance of further analysis including the detection of murmurs and ejection clicks. The proposed method is also applicable for detection and segmentation of other one dimensional biomedical signals.
Cardiac auscultation is the most practiced non-invasive and cost-effective procedure for the early diagnosis of heart diseases. While machine learning based systems can aid in automatically screening patients, the robustness of these systems is affec
Cardiovascular (CV) diseases are the leading cause of death in the world, and auscultation is typically an essential part of a cardiovascular examination. The ability to diagnose a patient based on their heart sounds is a rather difficult skill to ma
Cardiovascular diseases are the leading cause of deaths and severely threaten human health in daily life. On the one hand, there have been dramatically increasing demands from both the clinical practice and the smart home application for monitoring t
The diagnosis of heart diseases is a difficult task generally addressed by an appropriate examination of patients clinical data. Recently, the use of heart rate variability (HRV) analysis as well as of some machine learning algorithms, has proved to
Left ventricular assist devices (LVADs) are surgically implanted mechanical pumps that improve survival rates for individuals with advanced heart failure. While life-saving, LVAD therapy is also associated with high morbidity, which can be partially