ترغب بنشر مسار تعليمي؟ اضغط هنا

Bounding the fidelity of quantum many-body states from partial information

62   0   0.0 ( 0 )
 نشر من قبل Matteo Fadel
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We formulate an algorithm to lower bound the fidelity between quantum many-body states only from partial information, such as the one accessible by few-body observables. Our method is especially tailored to permutationally invariant states, but it gives nontrivial results in all situations where this symmetry is even partial. This property makes it particularly useful for experiments with atomic ensembles, where relevant many-body states can be certified from collective measurements. As an example, we show that a $xi^2approx-6;text{dB}$ spin squeezed state of $N=100$ particles can be certified with a fidelity up to $F=0.999$, only from the measurement of its polarization and of its squeezed quadrature. Moreover, we show how to quantitatively account for both measurement noise and partial symmetry in the states, which makes our method useful in realistic experimental situations.



قيم البحث

اقرأ أيضاً

Finite-size error (FSE), the discrepancy between an observable in a finite system and in the thermodynamic limit, is ubiquitous in numerical simulations of quantum many body systems. Although a rough estimate of these errors can be obtained from a se quence of finite-size results, a strict, quantitative bound on the magnitude of FSE is still missing. Here we derive rigorous upper bounds on the FSE of local observables in real time quantum dynamics simulations initialized from a product state. In $d$-dimensional locally interacting systems with a finite local Hilbert space, our bound implies $ |langle hat{S}(t)rangle_L-langle hat{S}(t)rangle_infty|leq C(2v t/L)^{cL-mu}$, with $v$, $C$, $c$, $mu $ constants independent of $L$ and $t$, which we compute explicitly. For periodic boundary conditions (PBC), the constant $c$ is twice as large as that for open boundary conditions (OBC), suggesting that PBC have smaller FSE than OBC at early times. The bound can be generalized to a large class of correlated initial states as well. As a byproduct, we prove that the FSE of local observables in ground state simulations decays exponentially with $L$, under a suitable spectral gap condition. Our bounds are practically useful in determining the validity of finite-size results, as we demonstrate in simulations of the one-dimensional (1D) quantum Ising and Fermi-Hubbard models.
We present a quantum algorithm for simulating the dynamics of a first-quantized Hamiltonian in real space based on the truncated Taylor series algorithm. We avoid the possibility of singularities by applying various cutoffs to the system and using a high-order finite difference approximation to the kinetic energy operator. We find that our algorithm can simulate $eta$ interacting particles using a number of calculations of the pairwise interactions that scales, for a fixed spatial grid spacing, as $tilde{O}(eta^2)$, versus the $tilde{O}(eta^5)$ time required by previous methods (assuming the number of orbitals is proportional to $eta$), and scales super-polynomially better with the error tolerance than algorithms based on the Lie-Trotter-Suzuki product formula. Finally, we analyze discretization errors that arise from the spatial grid and show that under some circumstances these errors can remove the exponential speedups typically afforded by quantum simulation.
180 - Matteo Fadel , Jordi Tura 2017
We present a method to certify the presence of Bell correlations in experimentally observed statistics, and to obtain new Bell inequalities. Our approach is based on relaxing the conditions defining the set of correlations obeying a local hidden vari able model, yielding a convergent hierarchy of semidefinite programs (SdPs). Because the size of these SdPs is independent of the number of parties involved, this technique allows to characterize correlations in many-body systems. As an example, we illustrate our method with the experimental data presented in [Science 352, 441 (2016)]
While quantum computers are capable of simulating many quantum systems efficiently, the simulation algorithms must begin with the preparation of an appropriate initial state. We present a method for generating physically relevant quantum states on a lattice in real space. In particular, the present algorithm is able to prepare general pure and mixed many-particle states of any number of particles. It relies on a procedure for converting from a second-quantized state to its first-quantized counterpart. The algorithm is efficient in that it operates in time that is polynomial in all the essential descriptors of the system, such the number of particles, the resolution of the lattice, and the inverse of the maximum final error. This scaling holds under the assumption that the wavefunction to be prepared is bounded or its indefinite integral known and that the Fock operator of the system is efficiently simulatable.
We formulate a general theory of wave-particle duality for many-body quantum states, which quantifies how wave- and particle-like properties balance each other. Much as in the well-understood single-particle case, which-way information -- here on the level of many-particle paths -- lends particle-character, while interference -- here due to coherent superpositions of many-particle amplitudes -- indicates wave-like properties. We analyze how many-particle which-way information, continuously tunable by the level of distinguishability of fermionic or bosonic, identical and possibly interacting particles, constrains interference contributions to many-particle observables and thus controls the quantum-to-classical transition in many-particle quantum systems. The versatility of our theoretical framework is illustrated for Hong-Ou-Mandel- and Bose-Hubbard-like exemplary settings.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا