ﻻ يوجد ملخص باللغة العربية
We present a quantum algorithm for simulating the dynamics of a first-quantized Hamiltonian in real space based on the truncated Taylor series algorithm. We avoid the possibility of singularities by applying various cutoffs to the system and using a high-order finite difference approximation to the kinetic energy operator. We find that our algorithm can simulate $eta$ interacting particles using a number of calculations of the pairwise interactions that scales, for a fixed spatial grid spacing, as $tilde{O}(eta^2)$, versus the $tilde{O}(eta^5)$ time required by previous methods (assuming the number of orbitals is proportional to $eta$), and scales super-polynomially better with the error tolerance than algorithms based on the Lie-Trotter-Suzuki product formula. Finally, we analyze discretization errors that arise from the spatial grid and show that under some circumstances these errors can remove the exponential speedups typically afforded by quantum simulation.
In this thesis we present new results relevant to two important problems in quantum information science: the development of a theory of entanglement and the exploration of the use of controlled quantum systems to the simulation of quantum many-body p
We formulate an algorithm to lower bound the fidelity between quantum many-body states only from partial information, such as the one accessible by few-body observables. Our method is especially tailored to permutationally invariant states, but it gi
Finite-size error (FSE), the discrepancy between an observable in a finite system and in the thermodynamic limit, is ubiquitous in numerical simulations of quantum many body systems. Although a rough estimate of these errors can be obtained from a se
While quantum computers are capable of simulating many quantum systems efficiently, the simulation algorithms must begin with the preparation of an appropriate initial state. We present a method for generating physically relevant quantum states on a
We present a method to certify the presence of Bell correlations in experimentally observed statistics, and to obtain new Bell inequalities. Our approach is based on relaxing the conditions defining the set of correlations obeying a local hidden vari