ﻻ يوجد ملخص باللغة العربية
The pairing mechanism in cuprates remains as one of the most challenging issues in the field of condensed matter physics. The unique 3d9 electron orbital of the Cu2+ ionic states in cuprates is supposed to be the major player for the occurrence of superconductivity. Recently, superconductivity at about 9-15 K was discovered in infinite layer thin films of nickelate Nd1-xSrxNiO2 (x=0.1-0.2) which is believed to have the similar 3d9 orbital electrons. The key issue concerned here is about the superconducting gap function. Here we report the first set data of single particle tunneling measurements on the superconducting nickelate thin films. We find predominantly two types of tunneling spectra, one shows a V-shape feature which can be fitted very well by a d-wave gap function with gap maximum of about 3.9 meV, another one exhibits a full gap of about 2.35 meV. Some spectra demonstrate mixed contributions of these two components. Our results suggest that the newly found Ni-based superconductors play as close analogs to cuprates, and thus demonstrate the commonality of unconventional superconductivity.
The recent reports of superconductivity in Nd1-xSrxNiO2/SrTiO3 heterostructures have reinvigorated interest in potential superconductivity of low-valence nickelates. Synthesis of Ni1+-containing compounds is notoriously difficult. In the current work
We have measured the temperature dependence of resistivity in single-crystalline CeNiGe$_{3}$ under hydrostatic pressure in order to establish the characteristic pressure-temperature phase diagram. The transition temperature to AFM-I phase $T_{rm N1}
We report the magnetotransport properties of thin polycrystalline films of the recently discovered non-oxide perovskite superconductor MgCNi3. CNi3 precursor films were deposited onto sapphire substrates and subsequently exposed to Mg vapor at 700 C.
Superconducting films in contact with non-superconducting regular arrays can exhibit commensurability effects between the vortex lattice and the unit cell of the pinning array. These matching effects yield a slowdown of the vortex flow and the corres
We present experimental results of the upper critical fields $H_{rm c2}$ of various MgB$_2$ thin films prepared by the molecular beam epitaxy, multiple-targets sputtering, and co-evaporation deposition apparatus. Experimental data of the $H_{rm c2}(T