ﻻ يوجد ملخص باللغة العربية
Transition metal dichalcogenides (TMDs) represent an entire new class of semiconducting 2D materials with exciting properties. Defects in 2D TMDs can crucially affect their physical and chemical properties. However, characterization of the presence and spatial distribution of defects is limited either in throughput or in resolution. Here, we demonstrate large area mapping of reactive sulfur-deficient defects in 2D-TMDs coupling single-molecule localization microscopy with fluorescence labeling using thiol chemistry. Our method, reminiscent of PAINT strategies, relies on the specific binding by reversible physisorption of fluorescent probes to sulfur-vacancies via a thiol group and their intermittent emission to apply localization of the labeled defects with a precision down to 15 nm. Tuning the distance between the fluorophore and the docking thiol site allows us to control Foster Resonance Energy Transfer (FRET) process and reveal large structural defects such as grain boundaries and line defects, due to the local irregular lattice structure. Our methodology provides a simple and fast alternative for large-scale mapping of non-radiative defects in 2D materials and paves the way for in-situ and spatially resolved monitoring of the interaction between chemical agent and the defects in 2D materials that has general implications for defect engineering in aqueous condition.
Two-dimensional transition metal dichalcogenides (TMDCs) have recently become attractive semiconductor materials for several optoelectronic applications, such as photodetection, light harvesting, phototransistors, light-emitting diodes, and lasers. T
2D materials offer an ideal platform to study the strain fields induced by individual atomic defects, yet challenges associated with radiation damage have so-far limited electron microscopy methods to probe these atomic-scale strain fields. Here, we
Monolayer transition metal dichalcogenides (TMDs) exhibit high nonlinear optical (NLO) susceptibilities. Experiments on MoS$_2$ have indeed revealed very large second-order ($chi^{(2)}$) and third-order ($chi^{(3)}$) optical susceptibilities. However
We present a many-body formalism for the simulation of time-resolved nonlinear spectroscopy and apply it to study the coherent interaction between excitons and trions in doped transition-metal dichalcogenides. Although the formalism can be straightfo
Atomically thin materials such as graphene and monolayer transition metal dichalcogenides (TMDs) exhibit remarkable physical properties resulting from their reduced dimensionality and crystal symmetry. The family of semiconducting transition metal di