ترغب بنشر مسار تعليمي؟ اضغط هنا

Excitons in atomically thin transition metal dichalcogenides

98   0   0.0 ( 0 )
 نشر من قبل Bernhard Urbaszek
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Atomically thin materials such as graphene and monolayer transition metal dichalcogenides (TMDs) exhibit remarkable physical properties resulting from their reduced dimensionality and crystal symmetry. The family of semiconducting transition metal dichalcogenides is an especially promising platform for fundamental studies of two-dimensional (2D) systems, with potential applications in optoelectronics and valleytronics due to their direct band gap in the monolayer limit and highly efficient light-matter coupling. A crystal lattice with broken inversion symmetry combined with strong spin-orbit interactions leads to a unique combination of the spin and valley degrees of freedom. In addition, the 2D character of the monolayers and weak dielectric screening from the environment yield a significant enhancement of the Coulomb interaction. The resulting formation of bound electron-hole pairs, or excitons, dominates the optical and spin properties of the material. Here we review recent progress in our understanding of the excitonic properties in monolayer TMDs and lay out future challenges. We focus on the consequences of the strong direct and exchange Coulomb interaction, discuss exciton-light interaction and effects of other carriers and excitons on electron-hole pairs in TMDs. Finally, the impact on valley polarization is described and the tuning of the energies and polarization observed in applied electric and magnetic fields is summarized.



قيم البحث

اقرأ أيضاً

Strain engineering in single-layer semiconducting transition metal dichalcogenides aims to tune their bandgap energy and to modify their optoelectronic properties by the application of external strain. In this paper we study transition metal dichalco genides monolayers deposited on polymeric substrates under the application of biaxial strain, both tensile and compressive. We can control the amount of biaxial strain applied by letting the substrate thermally expand or compress by changing the substrate temperature. After modelling the substrate-dependent strain transfer process with a finite elements simulation, we performed micro-differential spectroscopy of four transition metal dichalcogenides monolayers (MoS2, MoSe2, WS2, WSe2) under the application of biaxial strain and measured their optical properties. For tensile strain we observe a redshift of the bandgap that reaches a value as large as 94 meV/% in the case of single-layer WS2 deposited on polypropylene. The observed bandgap shifts as a function of substrate extension/compression follow the order WS2 > WSe2 > MoS2 > MoSe2.
Atomically thin layers of transition metal dichalcogenides (TMDCs) exhibit exceptionally strong Coulomb interaction between charge carriers due to the two-dimensional carrier confinement in connection with weak dielectric screening. The van der Waals nature of interlayer coupling makes it easy to integrate TMDC layers into heterostructures with different dielectric or metallic substrates. This allows to tailor electronic and optical properties of these materials, as Coulomb interaction inside atomically thin layers is very susceptible to screening by the environment. Here we theoretically investigate dynamical screening effects in TMDCs due to bulk substrates doped with carriers over a large density range, thereby offering three-dimensional plasmons as tunable degree of freedom. We report a wide compensation of renormalization effects leading to a spectrally more stable exciton than predicted for static substrate screening, even if plasmons and excitons are in resonance. We also find a nontrivial dependence of the single-particle band gap on substrate doping density due to dynamical screening. Our investigation provides microscopic insight into the mechanisms that allow for manipulations of TMDC excitons by means of arbitrary plasmonic environments on the nanoscale.
Just as photons are the quanta of light, plasmons are the quanta of orchestrated charge-density oscillations in conducting media. Plasmon phenomena in normal metals, superconductors and doped semiconductors are often driven by long-wavelength Coulomb interactions. However, in crystals whose Fermi surface is comprised of disconnected pockets in the Brillouin zone, collective electron excitations can also attain a shortwave component when electrons transition between these pockets. Here, we show that the band structure of monolayer transition-metal dichalcogenides gives rise to an intriguing mechanism through which shortwave plasmons are paired up with excitons. The coupling elucidates the origin for the optical side band that is observed repeatedly in monolayers of WSe$_2$ and WS$_2$ but not understood. The theory makes it clear why exciton-plasmon coupling has the right conditions to manifest itself distinctly only in the optical spectra of electron-doped tungsten-based monolayers.
We present a many-body formalism for the simulation of time-resolved nonlinear spectroscopy and apply it to study the coherent interaction between excitons and trions in doped transition-metal dichalcogenides. Although the formalism can be straightfo rwardly applied in a first-principles manner, for simplicity we use a parameterized band structure and a static model dielectric function, both of which can be obtained from a calculation using the $GW$ approximation. Our simulation results shed light on the interplay between singlet and triplet trions in molybdenum- and tungsten-based compounds. Our two-dimensional electronic spectra are in excellent agreement with recent experiments and we accurately reproduce the beating of a cross-peak signal indicative of quantum coherence between excitons and trions. Although we confirm that the quantum beats in molybdenum-based monolayers unambigously reflect the exciton-trion coherence time, they are shown here to provide a lower-bound to the coherence time of tungsten analogues due to a destructive interference emerging from coexisting singlet and triplet trions.
Recently, the celebrated Keldysh potential has been widely used to describe the Coulomb interaction of few-body complexes in monolayer transition-metal dichalcogenides. Using this potential to model charged excitons (trions), one finds a strong depen dence of the binding energy on whether the monolayer is suspended in air, supported on SiO$_2$, or encapsulated in hexagonal boron-nitride. However, empirical values of the trion binding energies show weak dependence on the monolayer configuration. This deficiency indicates that the description of the Coulomb potential is still lacking in this important class of materials. We address this problem and derive a new potential form, which takes into account the three atomic sheets that compose a monolayer of transition-metal dichalcogenides. The new potential self-consistently supports (i) the non-hydrogenic Rydberg series of neutral excitons, and (ii) the weak dependence of the trion binding energy on the environment. Furthermore, we identify an important trion-lattice coupling due to the phonon cloud in the vicinity of charged complexes. Neutral excitons, on the other hand, have weaker coupling to the lattice due to the confluence of their charge neutrality and small Bohr radius.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا