ﻻ يوجد ملخص باللغة العربية
The paper studies inverse problems of determining unknown coefficients in various semi-linear and quasi-linear wave equations. We introduce a method to solve inverse problems for non-linear equations using interaction of three waves, that makes it possible to study the inverse problem in all dimensions $n+1geq 3$. We consider the case when the set $Omega_{textrm{in}}$, where the sources are supported, and the set $Omega_{textrm{out}}$, where the observations are made, are separated. As model problems we study both a quasi-linear and also a semi-linear wave equation and show in each case that it is possible to uniquely recover the background metric up to the natural obstructions for uniqueness that is governed by finite speed of propagation for the wave equation and a gauge corresponding to change of coordinates. The proof consists of two independent components. In the first half we study multiple-fold linearization of the non-linear wave equation near real parts of Gaussian beams that results in a three-wave interaction. We show that the three-wave interaction can produce a three-to-one scattering data. In the second half of the paper, we study an abstract formulation of the three-to-one scattering relation showing that it recovers the topological, differential and conformal structures of the manifold in a causal diamond set that is the intersection of the future of the point $p_{in}in Omega_{textrm{in}}$ and the past of the point $p_{out}in Omega_{textrm{out}}$. The results do not require any assumptions on the conjugate or cut points.
In this article, we investigate the determination of the spatial component in the time-dependent second order coefficient of a hyperbolic equation from both theoretical and numerical aspects. By the Carleman estimates for general hyperbolic operators
We study the effect of additive noise to the inversion of FIOs associated to a diffeomorphic canonical relation. We use the microlocal defect measures to measure the power spectrum of the noise and analyze how that power spectrum is transformed under
In this chapter, we mainly review theoretical results on inverse source problems for diffusion equations with the Caputo time-fractional derivatives of order $alphain(0,1)$. Our survey covers the following types of inverse problems: 1. determination
We study inverse problems for semilinear elliptic equations with fractional power type nonlinearities. Our arguments are based on the higher order linearization method, which helps us to solve inverse problems for certain nonlinear equations in cases
In this article, we investigate inverse source problems for a wide range of PDEs of parabolic and hyperbolic types as well as time-fractional evolution equations by partial interior observation. Restricting the source terms to the form of separated v