ﻻ يوجد ملخص باللغة العربية
In the framework of a nonrelativistic potential quark model (NRPQM) for heavy quark system, we investigate the mass spectrum of the $P$-wave tetraquark states of $ccbar{c}bar{c}$ and $bbbar{b}bar{b}$. The Hamiltonian contains a linear confinement potential and parameterized one-gluon-exchange potential which includes a Coulomb type potential and spin-dependent potentials. The full-heavy tetraquark system is solved by a harmonic oscillator expansion method. With the same parameters fixed by the charmonium and bottomonium spectra, we obtained the full spectra for the $S$ and $P$-wave heavy tetraquark states. We find that the narrow structure around 6.9 GeV recently observed at LHCb in the di-$J/psi$ invariant mass spectrum can be naturally explained by the $P$-wave $ccbar{c}bar{c}$ states. Meanwhile, the observed broad structure around $6.2sim 6.8$ GeV can be consistently explained by the $S$-wave states around 6.5 GeV predicted in our previous work. Some contributions from those suppressed low-lying $P$-wave states around 6.7 GeV are also possible. Other decay channels are implied in such a scenario and they can be investigated by future experimental analysis. Considering the large discovery potential at LHCb, we give our predictions of the $P$-wave $bbbar{b}bar{b}$ states which can be searched for in the future.
Partial wave analysis is performed, with effective potentials as dynamical inputs, to scrutinize the recent LHCb data on the di-$J/psi$ invariant mass spectrum. Coupled-channel effects are incorporated in the production amplitude via final state inte
Motivated by a recent successful dynamical explanation for the newly observed fully-charm structure $X(6900)$ in the mass spectrum of di-$J/psi$ by LHCb [J.~Z.~Wang textit{et al.} arXiv:2008.07430], in this work, we extend the same dynamical rescatte
The two exotic $P_c^+(4380)$ and $P_c^+(4450)$ discovered in $2015$ by the LHCb Collaboration, together with the four resonances $X(4140)$, $X(4274)$, $X(4500)$ and $X(4700)$, reported in $2016$ by the same collaboration, are described in a constitue
Structure in the di-$J/psi$ mass spectrum observed by the LHCb experiment around 6.9 and 7.2 GeV is interpreted in terms of $J^{PC}=0^{++}$ and $2^{++}$ resonances between a $cc$ diquark and a $bar c bar c$ antidiquark, using a recently confirmed str
We use the Laplace/Borel sum rules (LSR) and the finite energy/local duality sum rules (FESR) to investigate the non-strange $udbar ubar d$ and hidden-strange $usbar ubar s$ tetraquark states with exotic quantum numbers $J^{PC}=0^{+-}$ . We systemati