ﻻ يوجد ملخص باللغة العربية
In this study, we propose an encoder-decoder structured system with fully convolutional networks to implement voice activity detection (VAD) directly on the time-domain waveform. The proposed system processes the input waveform to identify its segments to be either speech or non-speech. This novel waveform-based VAD algorithm, with a short-hand notation WVAD, has two main particularities. First, as compared to most conventional VAD systems that use spectral features, raw-waveforms employed in WVAD contain more comprehensive information and thus are supposed to facilitate more accurate speech/non-speech predictions. Second, based on the multi-branched architecture, WVAD can be extended by using an ensemble of encoders, referred to as WEVAD, that incorporate multiple attribute information in utterances, and thus can yield better VAD performance for specified acoustic conditions. We evaluated the presented WVAD and WEVAD for the VAD task in two datasets: First, the experiments conducted on AURORA2 reveal that WVAD outperforms many state-of-the-art VAD algorithms. Next, the TMHINT task confirms that through combining multiple attributes in utterances, WEVAD behaves even better than WVAD.
Deep learning-based models have greatly advanced the performance of speech enhancement (SE) systems. However, two problems remain unsolved, which are closely related to model generalizability to noisy conditions: (1) mismatched noisy condition during
In this work, we investigate the effectiveness of two techniques for improving variational autoencoder (VAE) based voice conversion (VC). First, we reconsider the relationship between vocoder features extracted using the high quality vocoders adopted
This study proposes a fully convolutional network (FCN) model for raw waveform-based speech enhancement. The proposed system performs speech enhancement in an end-to-end (i.e., waveform-in and waveform-out) manner, which dif-fers from most existing d
Robust voice activity detection (VAD) is a challenging task in low signal-to-noise (SNR) environments. Recent studies show that speech enhancement is helpful to VAD, but the performance improvement is limited. To address this issue, here we propose a
An effective approach to non-parallel voice conversion (VC) is to utilize deep neural networks (DNNs), specifically variational auto encoders (VAEs), to model the latent structure of speech in an unsupervised manner. A previous study has confirmed th