ترغب بنشر مسار تعليمي؟ اضغط هنا

Speech enhancement aided end-to-end multi-task learning for voice activity detection

148   0   0.0 ( 0 )
 نشر من قبل Xu Tan
 تاريخ النشر 2020
والبحث باللغة English




اسأل ChatGPT حول البحث

Robust voice activity detection (VAD) is a challenging task in low signal-to-noise (SNR) environments. Recent studies show that speech enhancement is helpful to VAD, but the performance improvement is limited. To address this issue, here we propose a speech enhancement aided end-to-end multi-task model for VAD. The model has two decoders, one for speech enhancement and the other for VAD. The two decoders share the same encoder and speech separation network. Unlike the direct thought that takes two separated objectives for VAD and speech enhancement respectively, here we propose a new joint optimization objective -- VAD-masked scale-invariant source-to-distortion ratio (mSI-SDR). mSI-SDR uses VAD information to mask the output of the speech enhancement decoder in the training process. It makes the VAD and speech enhancement tasks jointly optimized not only at the shared encoder and separation network, but also at the objective level. It also satisfies real-time working requirement theoretically. Experimental results show that the multi-task method significantly outperforms its single-task VAD counterpart. Moreover, mSI-SDR outperforms SI-SDR in the same multi-task setting.



قيم البحث

اقرأ أيضاً

Voice activity detection (VAD) is an essential pre-processing step for tasks such as automatic speech recognition (ASR) and speaker recognition. A basic goal is to remove silent segments within an audio, while a more general VAD system could remove a ll the irrelevant segments such as noise and even unwanted speech from non-target speakers. We define the task, which only detects the speech from the target speaker, as speaker-dependent voice activity detection (SDVAD). This task is quite common in real applications and usually implemented by performing speaker verification (SV) on audio segments extracted from VAD. In this paper, we propose an end-to-end neural network based approach to address this problem, which explicitly takes the speaker identity into the modeling process. Moreover, inference can be performed in an online fashion, which leads to low system latency. Experiments are carried out on a conversational telephone dataset generated from the Switchboard corpus. Results show that our proposed online approach achieves significantly better performance than the usual VAD/SV system in terms of both frame accuracy and F-score. We also used our previously proposed segment-level metric for a more comprehensive analysis.
Due to the simple design pipeline, end-to-end (E2E) neural models for speech enhancement (SE) have attracted great interest. In order to improve the performance of the E2E model, the locality and temporal sequential properties of speech should be eff iciently taken into account when modelling. However, in most current E2E models for SE, these properties are either not fully considered or are too complex to be realized. In this paper, we propose an efficient E2E SE model, termed WaveCRN. In WaveCRN, the speech locality feature is captured by a convolutional neural network (CNN), while the temporal sequential property of the locality feature is modeled by stacked simple recurrent units (SRU). Unlike a conventional temporal sequential model that uses a long short-term memory (LSTM) network, which is difficult to parallelize, SRU can be efficiently parallelized in calculation with even fewer model parameters. In addition, in order to more effectively suppress the noise components in the input noisy speech, we derive a novel restricted feature masking (RFM) approach that performs enhancement on the feature maps in the hidden layers; this is different from the approach that applies the estimated ratio mask on the noisy spectral features, which is commonly used in speech separation methods. Experimental results on speech denoising and compressed speech restoration tasks confirm that with the lightweight architecture of SRU and the feature-mapping-based RFM, WaveCRN performs comparably with other state-of-the-art approaches with notably reduced model complexity and inference time.
In this work, we learn a shared encoding representation for a multi-task neural network model optimized with connectionist temporal classification (CTC) and conventional framewise cross-entropy training criteria. Our experiments show that the multi-t ask training not only tackles the complexity of optimizing CTC models such as acoustic-to-word but also results in significant improvement compared to the plain-task training with an optimal setup. Furthermore, we propose to use the encoding representation learned by the multi-task network to initialize the encoder of attention-based models. Thereby, we train a deep attention-based end-to-end model with 10 long short-term memory (LSTM) layers of encoder which produces 12.2% and 22.6% word-error-rate on Switchboard and CallHome subsets of the Hub5 2000 evaluation.
Attention-based methods and Connectionist Temporal Classification (CTC) network have been promising research directions for end-to-end (E2E) Automatic Speech Recognition (ASR). The joint CTC/Attention model has achieved great success by utilizing bot h architectures during multi-task training and joint decoding. In this work, we present a multi-stream framework based on joint CTC/Attention E2E ASR with parallel streams represented by separate encoders aiming to capture diverse information. On top of the regular attention networks, the Hierarchical Attention Network (HAN) is introduced to steer the decoder toward the most informative encoders. A separate CTC network is assigned to each stream to force monotonic alignments. Two representative framework have been proposed and discussed, which are Multi-Encoder Multi-Resolution (MEM-Res) framework and Multi-Encoder Multi-Array (MEM-Array) framework, respectively. In MEM-Res framework, two heterogeneous encoders with different architectures, temporal resolutions and separate CTC networks work in parallel to extract complimentary information from same acoustics. Experiments are conducted on Wall Street Journal (WSJ) and CHiME-4, resulting in relative Word Error Rate (WER) reduction of 18.0-32.1% and the best WER of 3.6% in the WSJ eval92 test set. The MEM-Array framework aims at improving the far-field ASR robustness using multiple microphone arrays which are activated by separate encoders. Compared with the best single-array results, the proposed framework has achieved relative WER reduction of 3.7% and 9.7% in AMI and DIRHA multi-array corpora, respectively, which also outperforms conventional fusion strategies.
Transformers are powerful neural architectures that allow integrating different modalities using attention mechanisms. In this paper, we leverage the neural transformer architectures for multi-channel speech recognition systems, where the spectral an d spatial information collected from different microphones are integrated using attention layers. Our multi-channel transformer network mainly consists of three parts: channel-wise self attention layers (CSA), cross-channel attention layers (CCA), and multi-channel encoder-decoder attention layers (EDA). The CSA and CCA layers encode the contextual relationship within and between channels and across time, respectively. The channel-attended outputs from CSA and CCA are then fed into the EDA layers to help decode the next token given the preceding ones. The experiments show that in a far-field in-house dataset, our method outperforms the baseline single-channel transformer, as well as the super-directive and neural beamformers cascaded with the transformers.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا