ﻻ يوجد ملخص باللغة العربية
It is well-known that direct analytic continuation of DGLAP evolution kernel (splitting functions) from space-like to time-like kinematics breaks down at three loops. We identify the origin of this breakdown as splitting functions are not analytic function of external momenta. However, splitting functions can be constructed from square of (generalized) splitting amplitudes. We establish the rule of analytic continuation for splitting amplitudes, and use them to determine the analytic continuation of certain holomorphic and anti-holomorphic part of splitting functions and transverse-momentum dependent distributions. In this way we derive the time-like splitting functions at three loops without ambiguity. We also propose a reciprocity relation for singlet splitting functions, and provide non-trivial evidence that it holds in QCD at least through three loops.
We study the factorisation properties of one-loop scattering amplitudes in the triple collinear limit and extract the universal splitting amplitudes for processes initiated by a gluon. The splitting amplitudes are derived from the analytic Higgs plus
We present the crossover line between the quark gluon plasma and the hadron gas phases for small real chemical potentials. First we determine the effect of imaginary values of the chemical potential on the transition temperature using lattice QCD sim
The method of analytic continuation is one of the most powerful tools to circumvent the sign problem in lattice QCD. The present study is part of a larger project which, based on the investigation of QCD-like theories which are free of the sign probl
Within the framework of local analytic sector subtraction, we present the full analytic integration of double-real and real-virtual local infrared counterterms that enter NNLO QCD computations with any number of massless final-state partons. We show
In this paper we give a streamlined derivation of the exact quantization condition (EQC) on the quantum periods of the Schrodinger problem in one dimension with a general polynomial potential, based on Wronskian relations. We further generalize the E