ﻻ يوجد ملخص باللغة العربية
The method of analytic continuation is one of the most powerful tools to circumvent the sign problem in lattice QCD. The present study is part of a larger project which, based on the investigation of QCD-like theories which are free of the sign problem, is aimed at testing the validity of the method of analytic continuation and at improving its predictivity, in view of its application to real QCD. We have shown that a considerable improvement can be achieved if suitable functions are used to interpolate data with imaginary chemical potential. We present results obtained in a theory free of the sign problem such as two-color QCD at finite chemical potential.
We study the phase diagram of QCD at finite isospin density using two flavors of staggered quarks. We investigate the low temperature region of the phase diagram where we find a pion condensation phase at high chemical potential. We started a basic a
Two-color finite density QCD is free from the sign problem, and it is thus regarded as a good model to check the validity of the analytic continuation method. We study the method in terms of the corresponding chiral random matrix model. It is found t
We exploit analytic continuation to prolongate to the region of real chemical potentials the (pseudo)critical lines of QCD with two degenerate staggered fermions at nonzero temperature and quark or isospin density obtained in the region of imaginary
Complex nature of finite density QCD with heavy quarks in the strong coupling region is studied. For this purpose, we consider the effective potential as a function of Polyakov line, and study thermodynamic singularities and associated Stokes boundar
We investigate the properties of QCD at finite isospin chemical potential at zero and non-zero temperatures. This theory is not affected by the sign problem and can be simulated using Monte-Carlo techniques. With increasing isospin chemical potential