ترغب بنشر مسار تعليمي؟ اضغط هنا

Train Unit Shunting and Servicing: a Real-Life Application of Multi-Agent Path Finding

52   0   0.0 ( 0 )
 نشر من قبل Jesse Mulderij
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English
 تأليف Jesse Mulderij




اسأل ChatGPT حول البحث

In between transportation services, trains are parked and maintained at shunting yards. The conflict-free routing of trains to and on these yards and the scheduling of service and maintenance tasks is known as the train unit shunting and service problem. Efficient use of the capacity of these yards is becoming increasingly important, because of increasing numbers of trains without proportional extensions of the yards. Efficiently scheduling maintenance activities is extremely challenging: currently only heuristics succeed in finding solutions to the integrated problem at all. Bounds are needed to determine the quality of these heuristics, and also to support investment decisions on increasing the yard capacity. For this, a complete algorithm for a possibly relaxed problem model is required. We analyze the potential of extending the model for multi-agent path finding to be used for such a relaxation.



قيم البحث

اقرأ أيضاً

144 - Ziyuan Ma , Yudong Luo , Jia Pan 2021
Learning communication via deep reinforcement learning (RL) or imitation learning (IL) has recently been shown to be an effective way to solve Multi-Agent Path Finding (MAPF). However, existing communication based MAPF solvers focus on broadcast comm unication, where an agent broadcasts its message to all other or predefined agents. It is not only impractical but also leads to redundant information that could even impair the multi-agent cooperation. A succinct communication scheme should learn which information is relevant and influential to each agents decision making process. To address this problem, we consider a request-reply scenario and propose Decision Causal Communication (DCC), a simple yet efficient model to enable agents to select neighbors to conduct communication during both training and execution. Specifically, a neighbor is determined as relevant and influential only when the presence of this neighbor causes the decision adjustment on the central agent. This judgment is learned only based on agents local observation and thus suitable for decentralized execution to handle large scale problems. Empirical evaluation in obstacle-rich environment indicates the high success rate with low communication overhead of our method.
59 - Daniel Tang 2020
In this paper we consider the problem of finding the most probable set of events that could have led to a set of partial, noisy observations of some dynamical system. In particular, we consider the case of a dynamical system that is a (possibly stoch astic) time-stepping agent-based model with a discrete state space, the (possibly noisy) observations are the number of agents that have some given property and the events were interested in are the decisions made by the agents (their ``expressed behaviours) as the model evolves. We show that this problem can be reduced to an integer linear programming problem which can subsequently be solved numerically using a standard branch-and-cut algorithm. We describe two implementations, an ``offline algorithm that finds the maximum-a-posteriori expressed behaviours given a set of observations over a finite time window, and an ``online algorithm that incrementally builds a feasible set of behaviours from a stream of observations that may have no natural beginning or end. We demonstrate both algorithms on a spatial predator-prey model on a 32x32 grid with an initial population of 100 agents.
Agent-based modeling (ABM) is a powerful paradigm to gain insight into social phenomena. One area that ABM has rarely been applied is coalition formation. Traditionally, coalition formation is modeled using cooperative game theory. In this paper, a h euristic algorithm is developed that can be embedded into an ABM to allow the agents to find coalition. The resultant coalition structures are comparable to those found by cooperative game theory solution approaches, specifically, the core. A heuristic approach is required due to the computational complexity of finding a cooperative game theory solution which limits its application to about only a score of agents. The ABM paradigm provides a platform in which simple rules and interactions between agents can produce a macro-level effect without the large computational requirements. As such, it can be an effective means for approximating cooperative game solutions for large numbers of agents. Our heuristic algorithm combines agent-based modeling and cooperative game theory to help find agent partitions that are members of a games core solution. The accuracy of our heuristic algorithm can be determined by comparing its outcomes to the actual core solutions. This comparison achieved by developing an experiment that uses a specific example of a cooperative game called the glove game. The glove game is a type of exchange economy game. Finding the traditional cooperative game theory solutions is computationally intensive for large numbers of players because each possible partition must be compared to each possible coalition to determine the core set; hence our experiment only considers games of up to nine players. The results indicate that our heuristic approach achieves a core solution over 90% of the time for the games considered in our experiment.
A Multi-Agent System is a distributed system where the agents or nodes perform complex functions that cannot be written down in analytic form. Multi-Agent Systems are highly connected, and the information they contain is mostly stored in the connecti ons. When agents update their state, they take into account the state of the other agents, and they have access to those states via the connections. There is also external, user-generated input into the Multi-Agent System. As so much information is stored in the connections, agents are often memory-less. This memory-less property, together with the randomness of the external input, has allowed us to model Multi-Agent Systems using Markov chains. In this paper, we look at Multi-Agent Systems that evolve, i.e. the number of agents varies according to the fitness of the individual agents. We extend our Markov chain model, and define stability. This is the start of a methodology to control Multi-Agent Systems. We then build upon this to construct an entropy-based definition for the degree of instability (entropy of the limit probabilities), which we used to perform a stability analysis. We then investigated the stability of evolving agent populations through simulation, and show that the results are consistent with the original definition of stability in non-evolving Multi-Agent Systems, proposed by Chli and De Wilde. This paper forms the theoretical basis for the construction of Digital Business Ecosystems, and applications have been reported elsewhere.
Agent-based modelling is a valuable approach for systems whose behaviour is driven by the interactions between distinct entities. They have shown particular promise as a means of modelling crowds of people in streets, public transport terminals, stad iums, etc. However, the methodology faces a fundamental difficulty: there are no established mechanisms for dynamically incorporating real-time data into models. This limits simulations that are inherently dynamic, such as pedestrian movements, to scenario testing of, for example, the potential impacts of new architectural configurations on movements. This paper begins to address this fundamental gap by demonstrating how a particle filter could be used to incorporate real data into an agent-based model of pedestrian movements at run time. The experiments show that it is indeed possible to use a particle filter to perform online (real time) model optimisation. However, as the number of agents increases, the number of individual particles (and hence the computational complexity) required increases exponentially. By laying the groundwork for the real-time simulation of crowd movements, this paper has implications for the management of complex environments (both nationally and internationally) such as transportation hubs, hospitals, shopping centres, etc.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا