ترغب بنشر مسار تعليمي؟ اضغط هنا

Epitaxy, exfoliation, and strain-induced magnetism in rippled Heusler membranes

236   0   0.0 ( 0 )
 نشر من قبل Jason Kawasaki
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Single-crystalline membranes of functional materials enable the tuning of properties via extreme strain states; however, conventional routes for producing membranes require the use of sacrificial layers and chemical etchants, which can both damage the membrane and limit the ability to make them ultrathin. Here we demonstrate the epitaxial growth of the cubic Heusler compound GdPtSb on graphene-terminated Al$_2$O$_3$ substrates. Despite the presence of the graphene interlayer, the Heusler films have epitaxial registry to the underlying sapphire, as revealed by x-ray diffraction, reflection high energy electron diffraction, and transmission electron microscopy. The weak Van der Waals interactions of graphene enable mechanical exfoliation to yield free-standing GdPtSb membranes, which form ripples when transferred to a flexible polymer handle. Whereas unstrained GdPtSb is antiferromagnetic, measurements on rippled membranes show a spontaneous magnetic moment at room temperature, with a saturation magnetization of 5.2 bohr magneton per Gd. First-principles calculations show that the coupling to homogeneous strain is too small to induce ferromagnetism, suggesting a dominant role for strain gradients. Our membranes provide a novel platform for tuning the magnetic properties of intermetallic compounds via strain (piezomagnetixm and magnetostriction) and strain gradients (flexomagnetism).



قيم البحث

اقرأ أيضاً

Advances in complex oxide heteroepitaxy have highlighted the enormous potential of utilizing strain engineering via lattice mismatch to control ferroelectricity in thin-film heterostructures. This approach, however, lacks the ability to produce large and continuously variable strain states, thus limiting the potential for designing and tuning the desired properties of ferroelectric films. Here, we observe and explore dynamic strain-induced ferroelectricity in SrTiO$_3$ by laminating freestanding oxide films onto a stretchable polymer substrate. Using a combination of scanning probe microscopy, optical second harmonic generation measurements, and atomistic modeling, we demonstrate robust room-temperature ferroelectricity in SrTiO$_3$ with 2.0% uniaxial tensile strain, corroborated by the notable features of 180{deg} ferroelectric domains and an extrapolated transition temperature of 400 K. Our work reveals the enormous potential of employing oxide membranes to create and enhance ferroelectricity in environmentally benign lead-free oxides, which hold great promise for applications ranging from non-volatile memories and microwave electronics.
Remote epitaxy is a promising approach for synthesizing exfoliatable crystalline membranes and enabling epitaxy of materials with large lattice mismatch. However, the atomic scale mechanisms for remote epitaxy remain unclear. Here we experimentally d emonstrate that GaSb films grow on graphene-terminated GaSb (001) via a seeded lateral epitaxy mechanism, in which pinhole defects in the graphene serve as selective nucleation sites, followed by lateral epitaxy and coalescence into a continuous film. Remote interactions are not necessary in order to explain the growth. Importantly, the small size of the pinholes permits exfoliation of continuous, free-standing GaSb membranes. Due to the chemical similarity between GaSb and other III-V materials, we anticipate this mechanism to apply more generally to other materials. By combining molecular beam epitaxy with textit{in-situ} electron diffraction and photoemission, plus textit{ex-situ} atomic force microscopy and Raman spectroscopy, we track the graphene defect generation and GaSb growth evolution a few monolayers at a time. Our results show that the controlled introduction of nanoscale openings in graphene provides a powerful route towards tuning the growth and properties of epitaxial films and membranes on 2D materials.
We report growth of CuMnSb thin films by molecular beam epitaxy on InAs(001) substrates. The CuMnSb layers are compressively strained ($0.6~text{%}$) due to lattice mismatch. The thin films have a $omega$ full width half max of $7.7^{}$ according to high resolution X-ray diffraction, and a root mean square roughness of $0.14~text{nm}$ as determined by atomic force microscopy. Magnetic and electrical properties are found to be consistent with reported values from bulk samples. We find a Neel temperature of $62~text{K}$, a Curie-Weiss temperature of $-65~text{K}$ and an effective moment of $5.9~mu_{text{B}}/text{f.u.}$. Transport measurements confirm the antiferromagetic transition and show a residual resistivity at $4~text{K}$ of $35~muOmegacdot text{cm}$.
Youngs modulus determines the mechanical loads required to elastically stretch a material, and also, the loads required to bend it, given that bending stretches one surface while compressing the opposite one. Flexoelectric materials have the addition al property of becoming electrically polarized when bent. While numerous studies have characterized this flexoelectric coupling, its impact on the mechanical response, due to the energy cost of polarization upon bending, is largely unexplored. This intriguing contribution of strain gradient elasticity is expected to become visible at small length scales where strain gradients are geometrically enhanced, especially in high permittivity insulators. Here we present nano-mechanical measurements of freely suspended SrTiO3 membrane drumheads. We observe a striking non-monotonic thickness dependence of Youngs modulus upon small deflections. Furthermore, the modulus inferred from a predominantly bending deformation is three times larger than that of a predominantly stretching deformation for membranes thinner than 20 nm. In this regime we extract a giant strain gradient elastic coupling of ~2.2e-6 N, which could be used in new operational regimes of nano-electro-mechanics.
This article reviews static and dynamic interfacial effects in magnetism, focusing on interfacially-driven magnetic effects and phenomena associated with spin-orbit coupling and intrinsic symmetry breaking at interfaces. It provides a historical back ground and literature survey, but focuses on recent progress, identifying the most exciting new scientific results and pointing to promising future research directions. It starts with an introduction and overview of how basic magnetic properties are affected by interfaces, then turns to a discussion of charge and spin transport through and near interfaces and how these can be used to control the properties of the magnetic layer. Important concepts include spin accumulation, spin currents, spin transfer torque, and spin pumping. An overview is provided to the current state of knowledge and existing review literature on interfacial effects such as exchange bias, exchange spring magnets, spin Hall effect, oxide heterostructures, and topological insulators. The article highlights recent discoveries of interface-induced magnetism and non-collinear spin textures, non-linear dynamics including spin torque transfer and magnetization reversal induced by interfaces, and interfacial effects in ultrafast magnetization processes.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا