ترغب بنشر مسار تعليمي؟ اضغط هنا

Molecular beam epitaxy of the half-Heusler antiferromagnet CuMnSb

225   0   0.0 ( 0 )
 نشر من قبل Lukas Scheffler
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report growth of CuMnSb thin films by molecular beam epitaxy on InAs(001) substrates. The CuMnSb layers are compressively strained ($0.6~text{%}$) due to lattice mismatch. The thin films have a $omega$ full width half max of $7.7^{}$ according to high resolution X-ray diffraction, and a root mean square roughness of $0.14~text{nm}$ as determined by atomic force microscopy. Magnetic and electrical properties are found to be consistent with reported values from bulk samples. We find a Neel temperature of $62~text{K}$, a Curie-Weiss temperature of $-65~text{K}$ and an effective moment of $5.9~mu_{text{B}}/text{f.u.}$. Transport measurements confirm the antiferromagetic transition and show a residual resistivity at $4~text{K}$ of $35~muOmegacdot text{cm}$.



قيم البحث

اقرأ أيضاً

We present a detailed study of the growth of the tetragonal polymorph of antiferromagnetic CuMnAs by the molecular beam epitaxy technique. We explore the parameter space of growth conditions and their effect on the microstructural and transport prope rties of the material. We identify its typical structural defects and compare the properties of epitaxial CuMnAs layers grown on GaP, GaAs and Si substrates. Finally, we investigate the correlation between the crystalline quality of CuMnAs and its performance in terms of electrically induced resistance switching.
141 - S. Yamada , K. Yamamoto , K. Ueda 2009
For electrical spin injection and detection of spin-polarized electrons in silicon, we explore highly epitaxial growth of ferromagnetic full-Heusler-alloy Co2FeSi thin films on silicon substrates using low-temperature molecular beam epitaxy (LTMBE). Although in-situ reflection high energy electron diffraction images clearly show two-dimensional epitaxial growth for growth temperatures T_G of 60, 130, and 200 C, cross-sectional transmission electron microscopy experiments reveal that there are single-crystal phases other than Heusler alloys near the interface between Co_2FeSi and Si for T_G = 130 and 200 C. On the other hand, almost perfect heterointerfaces are achieved for T_G = 60 C. These results and magnetic measurements indicate that highly epitaxial growth of Co_2FeSi thin films on Si is demonstrated only for T_G = 60 C.
The Pd, and Pt based ABO2 delafossites are a unique class of layered, triangular oxides with 2D electronic structure and a large conductivity that rivals the noble metals. Here, we report successful growth of the metallic delafossite PdCoO2 by molecu lar beam epitaxy (MBE). The key challenge is controlling the oxidation of Pd in the MBE environment where phase-segregation is driven by the reduction of PdCoO2 to cobalt oxide and metallic palladium. This is overcome by combining low temperature (300 {deg}C) atomic layer-by-layer MBE growth in the presence of reactive atomic oxygen with a post-growth high-temperature anneal. Thickness dependence (5-265 nm) reveals that in the thin regime (<75 nm), the resistivity scales inversely with thickness, likely dominated by surface scattering; for thicker films the resistivity approaches the values reported for the best bulk-crystals at room temperature, but the low temperature resistivity is limited by structural twins. This work shows that the combination of MBE growth and a post-growth anneal provides a route to creating high quality films in this interesting family of layered, triangular oxides.
SrMoO$_3$ is a promising material for its excellent electrical conductivity, but growing high-quality thin films remains a challenge. Here we synthesized epitaxial films of SrMoO$_3$ using the molecular beam epitaxy (MBE) technique under a low oxygen -flow rate. Introduction of SrTiO$_3$ buffer layers of 4--8 unit cells between the film and the (001)-oriented SrTiO$_3$ or KTaO$_3$ substrate was crucial to remove impurities and/or roughness of the film surface. The obtained film shows improved electrical conductivities as compared with films obtained by other techniques. The high quality of the SrMoO$_3$ film is also verified by angle-resolved photoemission spectroscopy (ARPES) measurements showing clear Fermi surfaces.
We report on the growth of epitaxial ZnO thin films and ZnO based heterostructures on sapphire substrates by laser molecular beam epitaxy (MBE). We first discuss some recent developments in laser-MBE such as flexible ultra-violet laser beam optics, i nfrared laser heating systems or the use of atomic oxygen and nitrogen sources, and describe the technical realization of our advanced laser-MBE system. Then we describe the optimization of the deposition parameters for ZnO films such as laser fluence and substrate temperature and the use of buffer layers. The detailed structural characterization by x-ray analysis and transmission electron microscopy shows that epitaxial ZnO thin films with high structural quality can be achieved, as demonstrated by a small out-of-plane and in-plane mosaic spread as well as the absence of rotational domains. We also demonstrate the heteroepitaxial growth of ZnO based multilayers as a prerequisite for spin transport experiments and the realization of spintronic devices. As an example, we show that TiN/Co/ZnO/Ni/Au multilayer stacks can be grown on (0001)-oriented sapphire with good structural quality of all layers and well defined in-plane epitaxial relations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا