ﻻ يوجد ملخص باللغة العربية
Toolpath planning is an important task in laser aided additive manufacturing (LAAM) and other direct energy deposition (DED) processes. The deposition toolpaths for complex geometries with slender structures can be further optimized by partitioning the sliced 2D layers into sub-regions, and enable the design of appropriate infill toolpaths for different sub-regions. However, reported approaches for 2D layer segmentation generally require manual operations that are tedious and time-consuming. To increase segmentation efficiency, this paper proposes an autonomous approach based on evolutional computation for 2D layer segmentation. The algorithm works in an identify-and-segment manner. Specifically, the largest quasi-quadrilateral is identified and segmented from the target layer iteratively. Results from case studies have validated the effectiveness and efficacy of the developed algorithm. To further improve its performance, a roughing-finishing strategy is proposed. Via multi-processing, the strategy can remarkably increase the solution variety without affecting solution quality and search time, thus providing great application potential in LAAM toolpath planning. To the best of the authors knowledge, this work is the first to address automatic 2D layer segmentation problem in LAAM process. Therefore, it may be a valuable supplement to the state of the art in this area.
In the context of additive manufacturing we present a novel technique for direct slicing of a dilated or eroded volume, where the input volume boundary is a triangle mesh. Rather than computing a 3D model of the boundary of the dilated or eroded volu
Inspired by the allure of additive fabrication, we pose the problem of origami design from a new perspective: how can we grow a folded surface in three dimensions from a seed so that it is guaranteed to be isometric to the plane? We solve this proble
Additive manufacturing (AM) techniques have gained interest in the tissue engineering field thanks to their versatility and unique possibilities of producing constructs with complex macroscopic geometries and defined patterns. Recently, composite mat
Wire-feed laser additive manufacturing (WLAM) is gaining wide interest due to its high level of automation, high deposition rates, and good quality of printed parts. In-process monitoring and feedback controls that would reduce the uncertainty in the
To control part quality, it is critical to analyze pore generation mechanisms, laying theoretical foundation for future porosity control. Current porosity analysis models use machine setting parameters, such as laser angle and part pose. However, the